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ABSTRACT 32 

Objective 33 

Stillbirth is a potentially preventable complication of pregnancy. Identifying women at risk can 34 

guide decisions on closer surveillance or timing of birth to prevent fetal death. Prognostic 35 

models have been developed to predict the risk of stillbirth, but none have yet been externally 36 

validated. We externally validated published prediction models for stillbirth using individual 37 

participant data (IPD) meta-analysis to assess their predictive performance. 38 

 39 

Methods 40 

We searched Medline, EMBASE, DH-DATA and AMED databases from inception to 41 

December 2020 to identify stillbirth prediction models. We included studies that developed or 42 

updated prediction models for stillbirth for use at any time during pregnancy. IPD from cohorts 43 

within the International Prediction of Pregnancy Complication (IPPIC) Network were used to 44 

externally validate the identified prediction models whose individual variables were available in 45 

the IPD. We assessed the risk of bias of the models and IPD using PROBAST, and reported 46 

discriminative performance using the C-statistic, and calibration performance using calibration 47 

plots, calibration slope and calibration-in-the-large. We estimated performance measures 48 

separately in each study, and then summarised across studies using random-effects meta-49 

analysis. Clinical utility was assessed using net benefit. 50 

 51 

Results 52 

We identified 17 studies reporting the development of 40 prognostic models for stillbirth. None 53 

of the models were previously externally validated, and only a fifth (20%, 8/40) reported the full 54 

model equation. We were able to validate three of these models using the IPD from 19 cohort 55 
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studies (491,201 pregnant women) within the IPPIC Network database. Based on evaluating 56 

their development studies, all three models had an overall high risk of bias according to 57 

PROBAST. In our IPD meta-analysis, the models had summary C-statistics ranging from 0.53 58 

to 0.65; summary calibration slopes of 0.40 to 0.88, and generally with observed risks 59 

predictions that were too extreme compared to observed risks; and little to no clinical utility as 60 

assessed by net benefit. However, there remained uncertainty in performance for some models 61 

due to small available sample sizes 62 

 63 

Conclusion 64 

The three validated models generally showed poor and uncertain predictive performance in new 65 

data, with limited evidence to support their clinical application. Findings suggest 66 

methodological shortcomings in their development including overfitting of models. Further 67 

research is needed to further validate these and other models, identify stronger prognostic 68 

factors, and to develop more robust prediction models. 69 

 70 

Study registration 71 

PROSPERO ID: CRD42018074788 72 
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INTRODUCTION 78 

Stillbirth continues to be a major burden globally, accounting for almost two thirds of perinatal 79 

mortality.1,2 In the UK, stillbirth rates were largely unchanged from 2000 – 2015, and at 4.2 80 

stillbirths/1,000 births in 2017 had one of the highest rates in Europe.3-5 Prediction and 81 

individualisation of risk remain key priorities for stillbirth research,6,7 because accurate 82 

identification of women at risk of stillbirth can guide decisions on closer surveillance, or timing 83 

of birth to prevent fetal death. A recent review that identified existing prediction models for 84 

stillbirth reported that none had been externally validated.8 As a result, no prediction models are 85 

routinely used in clinical practice and none have been recommended by any national or 86 

international guidelines.  87 

 88 

An independent, external validation and comparison of existing multivariable stillbirth 89 

prediction models is important to help identify which prediction model (if any) performs best 90 

and is potentially applicable in clinical practice. However, the relative rarity of this devasting 91 

outcome limits rigorous investigation of existing stillbirth prediction models in single cohort 92 

studies. An individual participant data (IPD) meta-analysis that combines the raw data from 93 

multiple studies, has great potential for use in externally validating existing models, by 94 

increasing the sample size beyond what is feasible in a single study, thereby increasing the 95 

number of events observed.9-12 It also allows us to evaluate the generalisability and 96 

transportability of the predictive performance of the models across a range of clinical settings 97 

being considered for their application.  98 

 99 
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We therefore set out to identify, critically appraise and externally validate existing multivariable 100 

prognostic models for stillbirth prediction using IPD meta-analysis within the independent 101 

International Prediction of Pregnancy Complication (IPPIC) Network database, and to assess the 102 

clinical utility of the models using decision curve analysis.   103 

 104 

METHODS 105 

This study was based on a prospective protocol registered on PROSPERO (registration number 106 

CRD42018074788), and reported in line with TRIPOD recommendations for reporting risk 107 

prediction model validation studies.13  108 

 109 

Literature search and selection of prediction models for external validation using the IPPIC 110 

network database 111 

We systematically searched Medline, EMBASE, DH-DATA and AMED databases from 112 

inception to December 2020 to identify all studies that developed or updated prognostic models 113 

for stillbirth for use at any time during pregnancy. We also hand searched reference lists of 114 

relevant articles and systematic reviews to identify potentially eligible studies. Our search 115 

included terms for stillbirth, intrauterine fetal death and perinatal mortality, and study selection 116 

was done independently by two researchers. The complete search strategy is provided in 117 

appendix 1. 118 

 119 

Stillbirth model eligibility criteria, data extraction and risk of bias assessment 120 

We included studies that reported the development or update of a multivariable model with at 121 

least three variables to predict the risk of stillbirth in pregnant women and reported the model 122 

equation in the publication. No attempts were made to contact authors of studies that did not 123 

publish their model equation. Given the wide international variation in definitions of stillbirth, 124 
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we accepted the authors’ definition of stillbirth (both antepartum and intrapartum), and included 125 

models developed for use at any time in pregnancy. We excluded models that: predicted 126 

stillbirth as part of a composite adverse outcome; contained predictors that were not measured in 127 

any of the cohorts within the IPPIC IPD; or if there were too few outcomes (<10 stillbirths) 128 

reported across the IPPIC IPD cohorts with the same predictors as the model, to allow for its 129 

external validation. 130 

 131 

We extracted data on the definition of stillbirth, number of participants and events, population 132 

type, predictors in the final model, and the reported model performance. Based on information 133 

in the original articles, we assessed the risk of bias of included models using the Prediction 134 

study Risk of Bias Assessment tool (PROBAST),14 across the four domains of participant 135 

selection, predictors, outcome and analysis, and this was done independently by two researchers. 136 

Disagreement were resolved through discussions with a third researcher. We classified the risk 137 

of bias to be low, high or unclear for each domain, as well as an overall risk of bias. Each 138 

domain included signalling questions rated as “yes”, “probably yes”, “probably no”, “no” or “no 139 

information”. Domains with any signalling question rated as “probably no” or “no” were 140 

considered to have potential for bias and classed as high risk. The overall risk of bias was 141 

considered to be low if it scored low in all domains, high if any one domain had a high risk of 142 

bias, and unclear for any other classifications.  143 

 144 

International Prediction of Pregnancy Complications (IPPIC) Network 145 

We identified cohorts for the IPPIC Network by systematically reviewing evidence for risk of 146 

pregnancy complications including pre-eclampsia, stillbirth and fetal growth restriction (FGR), 147 

and inviting research groups that had undertaken the primary studies to join the IPPIC Network 148 
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and share their primary IPD. We also searched major databases and repositories and contacted 149 

researchers within the IPPIC Network to identify relevant studies or datasets that may have been 150 

missed, including unpublished research and birth cohorts. We formatted, cleaned and 151 

harmonised datasets received and assessed the quality of each cohort using the participants, 152 

predictors and outcome domains of the PROBAST tool.14 Study population could vary from low 153 

to high risk of development of complications. The network includes nearly 150 collaborators 154 

from 26 countries, contributing IPD of over 4 million pregnancies, and contains data on 155 

maternal characteristics, obstetric history, clinical assessment and tests, as well as various 156 

maternal and offspring outcomes. The database is a living repository and is regularly being 157 

enriched with additional studies. We consider the predictor variables contained within the IPPIC 158 

Network to represent measures which are easy to obtain in a clinical setting, reflecting their 159 

availability in routine practice. Methods on how cohorts within the IPPIC Network database 160 

were identified and harmonised have previously been published.15-17  161 

 162 

Statistical analysis for external validation using IPPIC network database 163 

Data harmonisation and set-up 164 

Predictors or outcomes of existing prediction models that were partially missing for <95% of 165 

individuals in any cohort were multiply imputed under the missing at random assumption using 166 

multiple imputation by chained equations.18,19 We used linear regression to impute for 167 

approximately normally distributed continuous variables, logistic regression for binary 168 

variables, and multinomial logistic regression for categorical variables. We carried out multiple 169 

imputation for each individual cohort separately and generated fifty imputed datasets for each. 170 

We also included other predictors that were available within the cohort as auxiliary variables in 171 

the imputation models. Imputation checks were completed by looking at histograms, summary 172 
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statistics and tables of values across imputations, as well as checking trace plots for convergence 173 

issues. 174 

 175 

External validation of models 176 

Each model was validated by applying the model equation to each participant in the cohort to 177 

calculate the linear predictor for that participant (𝐿𝐿𝑃𝑃𝑖𝑖, value of the linear combination of 178 

predictors in the model equation for individual 𝑖𝑖), as well as the predicted probability of 179 

stillbirth (inverse logit transformation of 𝐿𝐿𝑃𝑃𝑖𝑖). For each prediction model, the distribution of 𝐿𝐿𝑃𝑃𝑖𝑖 180 

values were summarised for each cohort, and performance statistics were calculated in each 181 

imputed dataset and then averaged across imputations using Rubin’s rules to obtain one estimate 182 

and standard error (SE) for each performance statistic in each cohort.20 183 

 184 

The discriminatory performance of models were assessed using the C-statistic (summarised as 185 

the area under receiver operating characteristic curve, where 1 indicates perfect discrimination 186 

and 0.5 indicates no discrimination beyond chance), and calibration statistics of the calibration 187 

slope (slope of the regression line fitted between predicted and observed risk probabilities on the 188 

logit scale, with 1 being the ideal value), and calibration-in-the-large (the extent that model 189 

predictions are systematically too low or too high across the cohort, ideal value of 0).21 22 Model 190 

calibration was also visually assessed using calibration plots representing the average predicted 191 

probability for risk groups categorised using deciles of predicted probability against the 192 

observed proportion in each group, in cohorts with at least 100 events. A lowess smoother curve 193 

was applied to show calibration across the entire range of predicted probabilities at the 194 

individual-level (i.e. without categorisation). For the calibration plots, average predicted 195 
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probabilities were obtained for individuals by pooling their linear predictor values across 196 

imputed datasets using Rubin’s rules, and then transforming to the probability scale. 197 

 198 

Performance measures of prediction models that were validated in more than two independent 199 

cohorts were summarised using a random effects meta-analysis to calculate a summary estimate 200 

for the model’s discrimination and calibration performance. Model performance was 201 

summarised for each statistic as the average and 95% confidence interval (CI) calculated using 202 

the Hartung-Knapp-Sidik-Jonkman approach.23,24 Between-study heterogeneity (𝜏𝜏2) and the 203 

proportion of variability due to between-study heterogeneity (𝐼𝐼2)25 were summarised. We also 204 

reported the approximate 95% prediction intervals, for potential predictive performance in a 205 

new study, as calculated using the approach of Higgins et al.26  206 

 207 

Decision curve analysis 208 

We performed decision curve analysis (DCA) to assess the clinical value of the models on 209 

cohorts with at least 100 events. This analysis allowed us to determine the net benefit of the 210 

models across a range of clinically plausible threshold probabilities (which included any values 211 

up to 0.1, given the generally very low risk of stillbirth), compared to either simply classifying 212 

all women as having the outcome or no women as having the outcome.27 The strategy with the 213 

highest net benefit at a particular threshold has the highest clinical value.28 The net benefit is 214 

represented as a function of the decision threshold in decision curve plots.  215 

All statistical analyses were performed using Stata software version 15. 216 

 217 

 218 

 219 
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RESULTS 220 

From 5055 citations we identified 17 articles describing the development of 40 stillbirth 221 

prediction models published between 2007 and 2020 (Appendix 2). Three studies reporting 222 

three prediction models - Smith 2007,29 Yerlikaya 2016,30 and Trudell 201731 met our inclusion 223 

criteria for external validation in the IPPIC IPD datasets (Figure 1).  224 

 225 

Characteristics of included models 226 

All three models were developed using binary logistic regression in unselected populations of 227 

pregnant women,29-31 and the definition of stillbirth varied between the studies. Two models 228 

included only maternal clinical characteristics as predictors,30,31 while one model additionally 229 

included ultrasound markers.29 Only one study had at least 10 events per predictor for model 230 

development,30 the others did not justify whether their sample size was sufficient. Using the 231 

PROBAST tool, the overall risk of bias for all three models was high, with all models assessed 232 

as being at high risk of bias in the analysis domain. The characteristics of included studies and 233 

models are described in Table 1. 234 

 235 

Characteristics of the IPPIC validation cohorts  236 

Of the 78 cohorts in the IPPIC data repository, 19 cohorts (24%) contained relevant data that 237 

could be used to externally validate at least one of the three prediction models identified. Only 238 

women with singleton pregnancies in the cohorts were used for external validation. The 239 

prevalence of stillbirth ≥24 weeks gestation in the cohorts ranged from 0.1% - 1.6%. A quarter 240 

of the studies used for external validation included only low risk (26%, 5/19) women, while a 241 

fifth (21%, 4/19) included only high-risk women in the cohorts. Seventy-five percent (14/19) of 242 

the cohorts used for external validation had an overall low risk of bias as assessed by 243 

PROBAST, 21% (4/19) were assessed as high risk and one cohort as unclear (appendix 3). 244 
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Summary maternal characteristics and outcomes of women in the validation cohort are provided 245 

in table 2, and a summary of missing data for each predictor and outcome is provided in 246 

appendix 4. 247 

 248 

External validation and meta-analysis of predictive performance 249 

The Smith 2007 model29 was validated in 3 cohorts, Yerlikaya 2016 model30  in 4 cohorts and 250 

the Trudell 2017 model31 in 17 cohorts. Two of the cohorts used to validate the Smith 2007 251 

model and all four of the cohorts used to validate the Yerlikaya 2016 model were also used to 252 

validate the Trudell 2017 model. A direct comparison of performance of the prediction models 253 

was not possible due to differences in outcomes of each model. The distribution of the linear 254 

predictor and predicted probability for each model and validation cohort are shown in appendix 255 

5.  256 

 257 

Model predictive performance  258 

The C-statistics of models in the different validation cohorts ranged from 0.56-0.82 in the Smith 259 

2007 model, 0.54-0.73 in the Yerlikaya 2016 model and 0.34-0.69 in the Trudell 2017 model 260 

(Table 3). The Trudell 2017 model had the lowest overall discrimination across the validation 261 

cohorts. Summary C-statistics of the models were 0.65 (95% CI 0.53 to 0.75) for the Smith 262 

2007 model, 0.61 (95% CI 0.43 to 0.77) for the Yerlikaya 2016 model, and 0.53 (95% CI 0.51 263 

to 0.55) for the Trudell 2017 model (Table 4). Confidence intervals for the Smith 2007 and 264 

Yerlikaya 2016 models were wide, due to the fewer number of cohorts available for their 265 

validation. 266 

 267 

Calibration statistics for each model in the different validation cohorts are shown in Table 3. 268 

Summary calibration slopes were < 1 for all models, indicative of overfitting during model 269 
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development; in particular, the 95% confidence intervals for the calibration slope were all below 270 

1 for the Yerlikaya 2016 and Trudell 2017 models, indicating extreme predictions compared to 271 

what was observed (Table 4).  272 

Each of the three models were validated in one cohort with at least 100 events. The average 273 

calibration plots showed miscalibration of the predicted risk of stillbirth in all three models 274 

(Figure 2). However, predicted probabilities were all less than 0.02, therefore absolute risk 275 

differences remain small. The 95% CI was wide for the calibration slope of the Smith 2007 276 

model, due to less data on stillbirth outcome in the validation cohorts available for this model, 277 

and so further research is needed for this model. 278 

 279 

Net benefit of model use 280 

The DCA for all three models in cohorts with at least 100 events, showed little or no 281 

improvement in the net benefit at any probability threshold compared to a treat all or treat none 282 

strategy (Figure 3). 283 

 284 

DISCUSSION 285 

Summary of findings 286 

Only a fifth of published stillbirth prognostic models reported the model equation required for 287 

independent external validation. Three models developed in high-income countries could be 288 

externally validated using cohorts from the IPPIC data repository. The models were mostly 289 

developed using maternal clinical characteristics, but one model additionally included 290 

ultrasound markers. PROBAST of the original model development articles suggested risk of 291 

bias concerns, and our IPD meta-analysis of model performance showed low discriminatory 292 

ability and poor calibration, with calibration slopes mostly <1, indicative of overfitting during 293 

model development. The models had no clinical utility as assessed by DCA. Although each of 294 
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the three models could be validated in at least one cohort with >100 events, confidence intervals 295 

of predictive performance were wide for the Smith 2007 model, suggesting further validation is 296 

needed for this model. 297 

 298 

Strengths and limitations 299 

To our knowledge, this is the first systematic review and external validation study of stillbirth 300 

prediction models.8,32 Our study with its large sample size, allowed for the evaluation of the 301 

predictive performance of each model across multiple cohorts, as well as the overall 302 

performance through an IPD meta-analysis. We used multiple imputation of predictors and 303 

outcomes for each cohort separately, to avoid loss of useful information, and ensure we did not 304 

mask any heterogeneity across cohorts.20,33 Although the definition of stillbirth in the validation 305 

cohorts were standardised, stillbirth was defined differently in each model, which prevented a 306 

head-to-head comparison of model performance.  307 

 308 

Our study has some limitations. We were only able to validate three of the 40 identified models , 309 

mainly due to the failure of studies to adhere to reporting standards of publishing the model 310 

equation.34,35 Only two models were published before release of TRIPOD. Some cohorts used in 311 

the external validation had few observed cases of stillbirths, and only two had more than 100 312 

events. Predicted probabilities in the cohorts only went up to 3%, which makes it difficult for 313 

the models to discriminate between women who had and did not have the outcome. This further 314 

highlights the primary limitation of stillbirth research, which is the comparative rarity of the 315 

outcome.  316 

 317 
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Comparison to existing studies 318 

External validation of prediction models are needed to confirm generalisability and 319 

transportability of a model in populations with different characteristics.36 However, independent 320 

data with sufficiently large sample sizes of stillbirth and relevant predictors for external 321 

validation of models are not readily available. This is a factor on why none of the published 322 

models have been recommended for use in clinical practice.35 Our meta-analysis obtained lower 323 

summary estimates for discrimination to that reported in the development datasets, although this 324 

might be due to chance as some confidence intervals were wide (e.g. Smith 2007), further 325 

research is recommended.29-31 Some published stillbirth models report discrimination of > 326 

0.8,37,38 but these studies either did not report the model equation needed for independent 327 

external validation,38 or did not provide enough information on predictors .37 In most cases, the 328 

performance of a prediction model is often overestimated when only estimated in the dataset 329 

used to develop the model, especially when there are few outcomes relative to the number of 330 

predictors considered.39,40 Our study highlighted several methodological shortcomings in the 331 

development of stillbirth prediction models, which is further reflected in the risk of bias 332 

assessment of the models.  333 

 334 

Relevance to clinical care 335 

The UK Government and NHS launched a care initiative in a bid to halve stillbirth rates by 336 

2025, which includes risk assessment as part of a wider care-bundle.41 The bundle does not 337 

include tools to help determine if a woman is at increased risk of stillbirth, instead individual 338 

factors have been identified to categorise women as low, moderate or high risk of FGR, the most 339 

frequent cause of stillbirth in the UK. An accurate tool to predict which woman is at increased 340 

risk of stillbirth would allow for personalised risk stratification in pregnancy, and enable 341 

clinicians to make decisions on closer surveillance, or timing of birth to prevent fetal death. It 342 
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would also empower mothers to make informed decisions on their risk of stillbirth. This would 343 

be a more targeted approach than the currently used system of a generalised population level 344 

risk factor to identify women at risk of stillbirth. However, none of the models validated in this 345 

study had sufficient performance or clinical utility to be recommended for use in practice.  346 

 347 

Recommendations for further research 348 

Stillbirth prediction models that can be used in routine care would be especially valuable in low-349 

and-middle-income countries, where stillbirth burden is disproportionately high. Models we 350 

were unable to externally validate will need to be independently validated before they can be 351 

recommended for use. Apart from improvement in the model development process to reduce 352 

overfitting by using larger sample sizes and adjusting for optimism of the predictor effects (e.g. 353 

by post-estimation shrinkage or penalising the model coefficients), additional work is needed to 354 

identify novel prognostic factors for use in model development, to improve the discriminatory 355 

performance of prediction models.42 A closer examination of existing stillbirth risk factors could 356 

potentially enable us to abandon inaccurate risk predictors and focus clinical care and research 357 

on the highest value predictors. 358 

Systematic reviews using aggregate data meta-analysis, currently represent the best available 359 

evidence on predictors of stillbirth, and have proposed several risk factors to categorise women 360 

as high-risk.43 However, these studies are limited by heterogeneity in the data reported within 361 

the primary studies, such as in the definition of stillbirth.43 Existing primary studies are often 362 

small with imprecise estimates, and inconsistencies in confounding factors adjusted for in their 363 

analysis, which sometimes leads to contradictory factor-outcome associations. Large cohorts are 364 

needed to collect richer data on risk factors to enable development and validation of prediction 365 

models.  366 

 367 
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Whilst this study has explored validation of different stillbirth prediction models, stillbirth is the 368 

final endpoint of several heterogeneous antecedent pathways, with varying biological 369 

mechanisms involved (for example, those involving FGR, and those secondary to diabetes, 370 

typically with a large for gestational age infant). It is possible that more than one model will be 371 

needed, either for prediction at different gestational ages, or for stillbirths with similar 372 

phenotypes.  373 

 374 

 375 

CONCLUSION 376 

This is a comprehensive assessment and independent external validation of published stillbirth 377 

prognostic models across multiple cohorts. Findings suggest methodological shortcomings 378 

including overfitting of models during development. None of the three previously published 379 

stillbirth models that were validated in this study showed sufficient performance or clinical 380 

utility to be recommended for use in practice. Although there were differences in predictor and 381 

outcome definitions used for the different models, all three models considered similar candidate 382 

predictors for model development, which may suggest additional and better predictors 383 

(prognostic factors) of stillbirth still need to be identified.  384 
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