Skip to main content

Research Repository

Advanced Search

Intermittent hypoxia treatment alleviates memory impairment in the 6-month-old APPswe/PS1dE9 mice and reduces amyloid beta accumulation and inflammation in the brain. (2021)
Journal Article
Chen. (2021). Intermittent hypoxia treatment alleviates memory impairment in the 6-month-old APPswe/PS1dE9 mice and reduces amyloid beta accumulation and inflammation in the brain. Alzheimer's Research and Therapy, 194 - ?. https://doi.org/10.1186/s13195-021-00935-z

BACKGROUND: Alzheimer's disease (AD) is a progressive, degenerative, and terminal disease without cure. There is an urgent need for a new strategy to treat AD. The aim of this study was to investigate the effects of intermittent hypoxic treatment (IH... Read More about Intermittent hypoxia treatment alleviates memory impairment in the 6-month-old APPswe/PS1dE9 mice and reduces amyloid beta accumulation and inflammation in the brain..

Astrocyte Activation in Neurovascular Damage and Repair Following Ischaemic Stroke (2021)
Journal Article
Patabendige, A., Singh, A., Jenkins, S., Sen, J., & Chen, R. (2021). Astrocyte Activation in Neurovascular Damage and Repair Following Ischaemic Stroke. International Journal of Molecular Sciences, 22(8), https://doi.org/10.3390/ijms22084280

Transient or permanent loss of tissue perfusion due to ischaemic stroke can lead to damage to the neurovasculature, and disrupt brain homeostasis, causing long-term motor and cognitive deficits. Despite promising pre-clinical studies, clinically appr... Read More about Astrocyte Activation in Neurovascular Damage and Repair Following Ischaemic Stroke.

Post-Ischaemic Immunological Response in the Brain: Targeting Microglia in Ischaemic Stroke Therapy. (2020)
Journal Article
Rawlinson, C., Jenkins, S., Thei, L., Dallas, M., & Chen, R. (2020). Post-Ischaemic Immunological Response in the Brain: Targeting Microglia in Ischaemic Stroke Therapy. Brain Sciences, 10(3), https://doi.org/10.3390/brainsci10030159

Microglia, the major endogenous immune cells of the central nervous system, mediate critical degenerative and regenerative responses in ischaemic stroke. Microglia become "activated", proliferating, and undergoing changes in morphology, gene and prot... Read More about Post-Ischaemic Immunological Response in the Brain: Targeting Microglia in Ischaemic Stroke Therapy..