Skip to main content

Research Repository

Advanced Search

Synchrotron radiation macromolecular crystallography: science and spin-offs.

Synchrotron radiation macromolecular crystallography: science and spin-offs. Thumbnail


Abstract

A current overview of synchrotron radiation (SR) in macromolecular crystallography (MX) instrumentation, methods and applications is presented. Automation has been and remains a central development in the last decade, as have the rise of remote access and of industrial service provision. Results include a high number of Protein Data Bank depositions, with an increasing emphasis on the successful use of microcrystals. One future emphasis involves pushing the frontiers of using higher and lower photon energies. With the advent of X-ray free-electron lasers, closely linked to SR developments, the use of ever smaller samples such as nanocrystals, nanoclusters and single molecules is anticipated, as well as the opening up of femtosecond time-resolved diffraction structural studies. At SR sources, a very high-throughput assessment for the best crystal samples and the ability to tackle just a few micron and sub-micron crystals will become widespread. With higher speeds and larger detectors, diffraction data volumes are becoming long-term storage and archiving issues; the implications for today and the future are discussed. Together with the rise of the storage ring to its current pre-eminence in MX data provision, the growing tendency of central facility sites to offer other centralized facilities complementary to crystallography, such as cryo-electron microscopy and NMR, is a welcome development.

Citation

(2015). Synchrotron radiation macromolecular crystallography: science and spin-offs. IUCrJ, 283 - 291. https://doi.org/10.1107/S205225251402795X

Acceptance Date Dec 22, 2014
Publication Date Mar 1, 2015
Journal IUCrJ
Publisher International Union of Crystallography
Pages 283 - 291
DOI https://doi.org/10.1107/S205225251402795X
Keywords automation; microcrystals; storage-ring upgrades; X-ray lasers; neutrons; industrial and commercial access; expanding wavelength range, time-resolved studies, dynamics, diffuse scattering, room-temperature studies, raw data
Publisher URL http://journals.iucr.org/m/issues/2015/02/00/fs5088/index.html

Files





Downloadable Citations