Alexandra Kozyreva
How much radioactive nickel does ASASSN-15lh require?
Kozyreva, Alexandra; Hirschi, Raphael; Blinnikov, Sergey; den Hartogh, Jacqueline
Abstract
The discovery of the most luminous supernova ASASSN-15lh triggered a shock-wave in the supernova community. The three possible mechanisms proposed for the majority of other superluminous supernovae do not produce a realistic physical model for this particular supernova. In the present study we show the limiting luminosity available from a nickel-powered pair-instability supernova. We computed a few exotic nickel-powered explosions with a total mass of nickel up to 1500 solar masses. We used the hydrostatic configurations prepared with the GENEVA and MESA codes, and the STELLA radiative-transfer code for following the explosion of these models. We show that 1500 solar masses of radioactive nickel is needed to power a luminosity of 2x10^45 erg/s. The resulting light curve is very broad and incompatible with the shorter ASASSN-15lh time-scale. This rules out a nickel-powered origin of ASASSN-15lh. In addition, we derive a simple peak luminosity - nickel mass relation from our data, which may serve to estimate of nickel mass from observed peak luminosities.
Citation
Kozyreva, A., Hirschi, R., Blinnikov, S., & den Hartogh, J. (2016). How much radioactive nickel does ASASSN-15lh require?. Monthly Notices of the Royal Astronomical Society, 459(1), L21–L25. https://doi.org/10.1093/mnrasl/slw036
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 2, 2016 |
Online Publication Date | Mar 16, 2016 |
Publication Date | Jun 11, 2016 |
Publicly Available Date | May 26, 2023 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Publisher | Oxford University Press |
Peer Reviewed | Peer Reviewed |
Volume | 459 |
Issue | 1 |
Pages | L21–L25 |
DOI | https://doi.org/10.1093/mnrasl/slw036 |
Keywords | radiative transfer, stars, evolution, massive, supernovae, general, individual, ASASSN-15h |
Publisher URL | http://dx.doi.org/10.1093/mnrasl/slw036 |
Files
1603.00335v1.pdf
(245 Kb)
PDF
You might also like
Turbulence and nuclear reactions in 3D hydrodynamics simulations of massive stars
(2023)
Journal Article
The p-process in exploding rotating massive stars
(2022)
Journal Article
UVES analysis of red giants in the bulge globular cluster NGC 6522
(2021)
Journal Article
Evolution of Wolf-Rayet stars as black hole progenitors
(2021)
Journal Article
Downloadable Citations
About Keele Repository
Administrator e-mail: research.openaccess@keele.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search