Paul Truman p.j.truman@keele.ac.uk
Commuting Hopf-Galois structures on a separable extension
Truman
Authors
Abstract
Let L/K be a finite separable extension of local or global fields in any characteristic, let H-1, H-2 be two Hopf algebras giving Hopf-Galois structures on the extension, and suppose that the actions of H-1, H-2 on L commute. We show that a fractional ideal B of L is free over its associated order in H-1 if and only if it is free over its associated order in H-2. We also study which properties these associated orders share.
Citation
Truman. (2018). Commuting Hopf-Galois structures on a separable extension. Communications in Algebra, 1420-1427. https://doi.org/10.1080/00927872.2017.1346107
Acceptance Date | Jun 3, 2017 |
---|---|
Publication Date | Feb 1, 2018 |
Journal | Communications in Algebra |
Print ISSN | 0092-7872 |
Publisher | Taylor and Francis |
Pages | 1420-1427 |
DOI | https://doi.org/10.1080/00927872.2017.1346107 |
Keywords | mathematics, associated order, Galois module structure, Hopf-Galois module theory, Hopf-Galois structure |
Publisher URL | http://www.tandfonline.com/doi/full/10.1080/00927872.2017.1346107 |
Files
Commuting Hopf-Galois Structures - CIA.pdf
(302 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc/4.0/
You might also like
On ρ-conjugate Hopf–Galois structures
(2023)
Journal Article
Hopf Algebras and Galois Module Theory
(2021)
Book
Abelian fixed point free endomorphisms and the Yang-Baxter equation
(2020)
Journal Article
Opposite Skew Left Braces and Applications
(2020)
Journal Article
Isomorphism problems for Hopf-Galois structures on separable field extensions
(2019)
Journal Article