Paul Truman p.j.truman@keele.ac.uk
Integral Hopf-Galois structures for tame extensions
Truman, Paul
Authors
Abstract
We study the Hopf-Galois module structure of algebraic integers in some Galois extensions of p-adic fields L/K which are at most tamely ramified, generalizing some of the results of the author's 2011 paper cited below. If G=Gal(L/K) and H=L[N]G is a Hopf algebra giving a Hopf-Galois structure on L/K, we give a criterion for the OK-order OL[N]G to be a Hopf order in H. When OL[N]G is Hopf, we show that it coincides with the associated order AH of OL in H and that OL is free over AH, and we give a criterion for a Hopf-Galois structure to exist at integral level. As an illustration of these results, we determine the commutative Hopf-Galois module structure of the algebraic integers in tame Galois extensions of degree qr, where q and r are distinct primes.
Citation
Truman, P. (2013). Integral Hopf-Galois structures for tame extensions
Acceptance Date | Oct 9, 2013 |
---|---|
Publication Date | Oct 9, 2013 |
Journal | New York Journal of Mathematics |
Print ISSN | 1076-9803 |
Pages | 647-655 |
Keywords | Hopf-Galois structures; Hopf-Galois module theory; Hopf order; tame ramification |
Publisher URL | http://nyjm.albany.edu/j/2013/19-32.html |
Files
P Truman - Integral Hopf-Galois structures for tame extensions.pdf
(313 Kb)
PDF
You might also like
On ρ-conjugate Hopf–Galois structures
(2023)
Journal Article
Hopf Algebras and Galois Module Theory
(2021)
Book
Abelian fixed point free endomorphisms and the Yang-Baxter equation
(2020)
Journal Article
Opposite Skew Left Braces and Applications
(2020)
Journal Article
Isomorphism problems for Hopf-Galois structures on separable field extensions
(2019)
Journal Article
Downloadable Citations
About Keele Repository
Administrator e-mail: research.openaccess@keele.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search