Raphael Hirschi r.hirschi@keele.ac.uk
Pair-instability Supernova Simulations: Progenitor Evolution, Explosion, and Light Curves
Hirschi, Raphael
Authors
Abstract
In recent years, the viability of the pair-instability supernova (PISN) scenario for explaining superluminous supernovae has all but disappeared except for a few slowly-evolving examples. However, PISNe are not predicted to be superluminous throughout the bulk of their mass range. In fact, it is more likely that the first PISN we see (if we have not seen one already) will not be superluminous. Here, we present hydrodynamic simulations of PISNe for four stellar models with unique envelope properties spanning the PISN mass range. In addition, we compute synthetic light curves (LCs) for comparison with current and future observations. We also investigate, in the context of our most massive model, the prospect of mixing in the supernova ejecta, alleviating discrepancies between current PISN models and the remaining superluminous candidate events. To this end, we present the first published 3D hydrodynamic simulations of PISNe. After achieving convergence between 1D, 2D, and 3D simulations, we examine mixing in the supernova ejecta and its affect on the bolometric LC. We observe slight deviations from spherical symmetry, which increase with the number of dimensions. We find no significant effects on the bolometric LC; however, we conclude that mixing between the silicon and oxygen rich layers caused by the Rayleigh–Taylor instability may affect spectra.
Citation
Hirschi, R. (2017). Pair-instability Supernova Simulations: Progenitor Evolution, Explosion, and Light Curves. Astrophysical Journal, 100 - 100. https://doi.org/10.3847/1538-4357/aa8461
Acceptance Date | Aug 4, 2017 |
---|---|
Publication Date | Sep 6, 2017 |
Journal | Astrophysical Journal |
Print ISSN | 0004-637X |
Publisher | American Astronomical Society |
Pages | 100 - 100 |
DOI | https://doi.org/10.3847/1538-4357/aa8461 |
Keywords | hydrodynamics, radiative transfer, stars, evolution, interiors, massive, supernovae, general |
Publisher URL | https://doi.org/10.3847/1538-4357/aa8461 |
Files
Gilmer_2017_ApJ_846_100.pdf
(3.2 Mb)
PDF
You might also like
Turbulence and nuclear reactions in 3D hydrodynamics simulations of massive stars
(2023)
Journal Article
Very massive star winds as sources of the short-lived radioactive isotope Al-26
(2022)
Journal Article
Very massive star winds as sources of the short-lived radioactive isotope 26Al
(2022)
Journal Article
Downloadable Citations
About Keele Repository
Administrator e-mail: research.openaccess@keele.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search