Paul Truman p.j.truman@keele.ac.uk
Commutative Hopf-Galois module structure of tame extensions
Truman
Authors
Abstract
We prove three theorems concerning the Hopf-Galois module structure of fractional ideals in a finite tamely ramified extension of p-adic fields or number fields which is H-Galois for a commutative Hopf algebra H. Firstly, we show that if L/K is a tame Gable extension of p-adic fields then each fractional ideal of L is free over its associated order in H. We also show that this conclusion remains valid if L/K is merely almost classically Galois. Finally, we show that if L/K is an abelian extension of number fields then every ambiguous fractional ideal of L is locally free over its associated order in H. (C) 2018 Elsevier Inc. All rights reserved.
Citation
Truman. (2018). Commutative Hopf-Galois module structure of tame extensions. Journal of Algebra, 389-408. https://doi.org/10.1016/j.jalgebra.2018.01.047
Acceptance Date | Feb 14, 2018 |
---|---|
Publication Date | Jun 1, 2018 |
Journal | Journal of Algebra |
Print ISSN | 0021-8693 |
Publisher | Elsevier |
Pages | 389-408 |
DOI | https://doi.org/10.1016/j.jalgebra.2018.01.047 |
Keywords | Hopf-Galois structure, Hopf-Galois module theory, Galois module structure, Associated order |
Publisher URL | http://dx.doi.org/10.1016/j.jalgebra.2018.01.047 |
Files
P Truman - Communtative Hopf-Galois module structure of tame extensions.pdf
(303 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
On ρ-conjugate Hopf–Galois structures
(2023)
Journal Article
Hopf Algebras and Galois Module Theory
(2021)
Book
Abelian fixed point free endomorphisms and the Yang-Baxter equation
(2020)
Journal Article
Opposite Skew Left Braces and Applications
(2020)
Journal Article
Isomorphism problems for Hopf-Galois structures on separable field extensions
(2019)
Journal Article
Downloadable Citations
About Keele Repository
Administrator e-mail: research.openaccess@keele.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search