J.W. den Hartogh
Constraining transport of angular momentum in stars Combining asteroseismic observations of core helium burning stars and white dwarfs
den Hartogh, J.W.; Eggenberger, P.; Hirschi, R.
Abstract
Context
Transport of angular momentum has been a challenging topic within the stellar evolution community, even more since the recent asteroseismic surveys. All published studies on rotation using asteroseismic observations show a discrepancy between the observed and calculated rotation rates, indicating there is an undetermined process of angular momentum transport active in these stars.
Aims
We aim to constrain the efficiency of this process by investigating rotation rates of 2.5 M-circle dot stars.
Methods
First, we investigated whether the Tayler-Spruit dynamo could be responsible for the extra transport of angular momentum for stars with an initial mass of 2.5 M-circle dot. Then, by computing rotating models including a constant additional artificial viscosity, we determined the efficiency of the missing process of angular momentum transport by comparing the models to the asteroseismic observations of core helium burning stars. Parameter studies were performed to investigate the effect of the stellar evolution code used, initial mass, and evolutionary stage. We evolved our models into the white dwarf phase, and provide a comparison to white dwarf rotation rates.
Results
The Tayler-Spruit dynamo is unable to provide enough transport of angular momentum to reach the observed values of the core helium burning stars investigated in this paper. We find that a value for the additional artificial viscosity nu(add) around 10(7) cm(2) s(-1) provides enough transport of angular momentum. However, the rotational period of these models is too high in the white dwarf phase to match the white dwarf observations. From this comparison we infer that the efficiency of the missing process must decrease during the core helium burning phase. When excluding the nu(add) during core helium burning phase, we can match the rotational periods of both the core helium burning stars and white dwarfs.
Citation
den Hartogh, J., Eggenberger, P., & Hirschi, R. (2019). Constraining transport of angular momentum in stars Combining asteroseismic observations of core helium burning stars and white dwarfs. Astronomy & Astrophysics, 622, 1-10. https://doi.org/10.1051/0004-6361/201834330
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 7, 2019 |
Publication Date | Feb 18, 2019 |
Journal | Astronomy & Astrophysics |
Print ISSN | 0004-6361 |
Publisher | EDP Sciences |
Peer Reviewed | Peer Reviewed |
Volume | 622 |
Article Number | A187 |
Pages | 1-10 |
DOI | https://doi.org/10.1051/0004-6361/201834330 |
Keywords | stars: evolution / stars: rotation / stars: oscillations / stars: interiors |
Publisher URL | http://doi.org/10.1051/0004-6361/201834330 |
Files
07032019_aa34330-18.pdf
(2.1 Mb)
PDF
You might also like
Turbulence and nuclear reactions in 3D hydrodynamics simulations of massive stars
(2023)
Journal Article
The p-process in exploding rotating massive stars
(2022)
Journal Article
UVES analysis of red giants in the bulge globular cluster NGC 6522
(2021)
Journal Article
Evolution of Wolf-Rayet stars as black hole progenitors
(2021)
Journal Article