Etienne A Kaiser
Relative Importance of Convective Uncertainties in Massive Stars
Kaiser, Etienne A; Hirschi, Raphael; Arnett, W David; Georgy, Cyril; Scott, Laura J A; Cristini, Andrea
Authors
Abstract
In this work, we investigate the impact of uncertainties due to convective boundary mixing (CBM), commonly called ‘overshoot’, namely the boundary location and the amount of mixing at the convective boundary, on stellar structure and evolution. For this we calculated two grids of stellar evolution models with the MESA code, each with the Ledoux and the Schwarzschild boundary criterion, and vary the amount of CBM. We calculate each grid with the initial masses 15, 20 and $25\, \rm M_ødot$. We present the stellar structure of the models during the hydrogen and helium burning phases. In the latter, we examine the impact on the nucleosynthesis. We find a broadening of the main-sequence with more CBM, which is more in agreement with observations. Furthermore during the core hydrogen burning phase there is a convergence of the convective boundary location due to CBM. The uncertainties of the intermediate convective zone remove this convergence. The behaviour of this convective zone strongly affects the surface evolution of the model, i.e. how fast it evolves red-wards. The amount of CBM impacts the size of the convective cores and the nucleosynthesis, e.g. the 12C to 16O ratio and the weak s-process. Lastly, we determine the uncertainty that the range of parameter values investigated introduce and we find differences of up to $70%$ for the core masses and the total mass of the star.
Citation
Kaiser, E. A., Hirschi, R., Arnett, W. D., Georgy, C., Scott, L. J. A., & Cristini, A. (2020). Relative Importance of Convective Uncertainties in Massive Stars. Monthly Notices of the Royal Astronomical Society, 496(2), 1967-1989. https://doi.org/10.1093/mnras/staa1595
Journal Article Type | Article |
---|---|
Acceptance Date | May 30, 2020 |
Online Publication Date | Jun 8, 2020 |
Publication Date | 2020-08 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Publisher | Oxford University Press |
Peer Reviewed | Peer Reviewed |
Volume | 496 |
Issue | 2 |
Pages | 1967-1989 |
DOI | https://doi.org/10.1093/mnras/staa1595 |
Keywords | convection, stars: evolution, stars: interiors, stars: massive, nucleosynthesis |
Publisher URL | https://doi.org/10.1093/mnras/staa1595 |
Files
Relative importance of convective uncertainties in massive stars.pdf
(3.3 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc/4.0/
You might also like
Turbulence and nuclear reactions in 3D hydrodynamics simulations of massive stars
(2023)
Journal Article
Very massive star winds as sources of the short-lived radioactive isotope Al-26
(2022)
Journal Article
Very massive star winds as sources of the short-lived radioactive isotope 26Al
(2022)
Journal Article
Downloadable Citations
About Keele Repository
Administrator e-mail: research.openaccess@keele.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search