Skip to main content

Research Repository

Advanced Search

The Gaia-ESO Public Spectroscopic Survey: Implementation, data products, open cluster survey, science, and legacy

Wright; Jeffries; Abbas, U; Borsen-Koch, VA; Villanova, S; Wright, NJ; Spina, L; Tabernero, HM; Soubiran, C; Valentini, M; Van der Swaelmen, M; Alves, J; Balaguer-Nunez, L; Gonzalez, HJI; Barklem, PS; Traven, G; Herrero, A; Lobel, A; Maiz Apellaniz, J; Montes, D; Morel, T; Guiglion, G; Gebran, M; Feuillet, DK; Daflon, S; Bonito, R; Caffau, E; Kordopatis, G; Kos, J; Adibekyan, V; Lagarde, N; Mahy, L; Mapelli, M; Marfil, E; Martell, SL; Messina, S; Franchini, M; Fremat, Y; Friel, ED; Fu, X; Geisler, D; Gerhard, O; Solares, EAG; Grebel, EK; Gutierrez Albarran, ML; Hatzidimitriou, D; Held, EV; Jimenez-Esteban, F; Jonsson, H; Jordi, C; Khachaturyants, T; Drazdauskas, A; Evans, NW; Feltzing, S; Binney, J; Famaey, B; Randich, S; Gilmore, G; Magrini, L; Sacco, GG; Jackson, RJ; Jeffries, RD; Drew, J; Ferguson, AMN; Micela, G; Negueruela, I; Prusti, T; Rix, H-W; Vallenari, A; Bonifacio, P; Zwitter, T; Asplund, M; Bayo, A; Bergemann, M; Biazzo, K; Carraro, G; Casey, AR; Damiani, F; Koposov, SE; K...

The Gaia-ESO Public Spectroscopic Survey: Implementation, data products, open cluster survey, science, and legacy Thumbnail


U Abbas

VA Borsen-Koch

S Villanova

NJ Wright

L Spina

HM Tabernero

C Soubiran

M Valentini

M Van der Swaelmen

J Alves

L Balaguer-Nunez

HJI Gonzalez

PS Barklem

G Traven

A Herrero

A Lobel

J Maiz Apellaniz

D Montes

T Morel

G Guiglion

M Gebran

DK Feuillet

S Daflon

R Bonito

E Caffau

G Kordopatis

J Kos

V Adibekyan

N Lagarde

L Mahy

M Mapelli

E Marfil

SL Martell

S Messina

M Franchini

Y Fremat

ED Friel

X Fu

D Geisler

O Gerhard

EAG Solares

EK Grebel

ML Gutierrez Albarran

D Hatzidimitriou

EV Held

F Jimenez-Esteban

H Jonsson

C Jordi

T Khachaturyants

A Drazdauskas

NW Evans

S Feltzing

J Binney

B Famaey

S Randich

G Gilmore

L Magrini

GG Sacco

RJ Jackson

RD Jeffries

J Drew

AMN Ferguson

G Micela

I Negueruela

T Prusti

H-W Rix

A Vallenari

P Bonifacio

T Zwitter

M Asplund

A Bayo

M Bergemann

K Biazzo

G Carraro

AR Casey

F Damiani

SE Koposov

AJ Korn

AC Lanzafame

E Pancino

A Recio-Blanco

R Smiljanic

S Van Eck

NA Walton

E Flaccomio

P Francois

MJ Irwin

L Casagrande

L Casamiquela

RS Collins

V D'Orazi

MLL Dantas

VP Debattista

E Delgado-Mena

P Di Marcantonio

A Miglio

I Minchev

A Moitinho

J Montalban

MJPFG Monteiro

C Morossi

N Mowlavi

A Mucciarelli

DNA Murphy

N Nardetto

S Ortolani

F Paletou

J Palous

E Paunzen

JC Pickering

A Quirrenbach

PR Fiorentin

JI Read

D Romano

N Ryde

N Sanna

W Santos

GM Seabroke

A Spagna

M Steinmetz

E Stonkute

E Sutorius

F Thevenin

M Tosi

D Barrado

SR Berlanas

AS Binks

A Bressan

R Capuzzo-Dolcetta

M Tsantaki

S Vink

N Wright

RFG Wyse

M Zoccali

J Zorec

DB Zucker

A Frasca

U Heiter

V Hill

P Jofre

P de Laverny

K Lind

G Marconi

C Martayan

T Masseron

L Monaco

L Morbidelli

L Prisinzano

L Sbordone

SG Sousa

S Zaggia

CC Worley

A Hourihane

A Gonneau

CV Vazquez

E Franciosini

JR Lewis

EJ Alfaro

C Allende Prieto

T Bensby

R Blomme

A Bragaglia


Context. In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia-ESO Public Spectroscopic Survey, the only one performed on a 8m class telescope, was designed to target 100 000 stars using FLAMES on the ESO VLT (both Giraffe and UVES spectrographs), covering all the Milky Way populations, with a special focus on open star clusters. Aims. This article provides an overview of the survey implementation (observations, data quality, analysis and its success, data products, and releases), of the open cluster survey, of the science results and potential, and of the survey legacy. A companion article reviews the overall survey motivation, strategy, Giraffe pipeline data reduction, organisation, and workflow. Methods. We made use of the information recorded and archived in the observing blocks; during the observing runs; in a number of relevant documents; in the spectra and master catalogue of spectra; in the parameters delivered by the analysis nodes and the working groups; in the final catalogue; and in the science papers. Based on these sources, we critically analyse and discuss the output and products of the Survey, including science highlights. We also determined the average metallicities of the open clusters observed as science targets and of a sample of clusters whose spectra were retrieved from the ESO archive. Results. The Gaia-ESO Survey has determined homogeneous good-quality radial velocities and stellar parameters for a large fraction of its more than 110 000 unique target stars. Elemental abundances were derived for up to 31 elements for targets observed with UVES. Lithium abundances are delivered for about 1/3 of the sample. The analysis and homogenisation strategies have proven to be successful; several science topics have been addressed by the Gaia-ESO consortium and the community, with many highlight results achieved. Conclusions. The final catalogue will be released through the ESO archive in the first half of 2022, including the complete set of advanced data products. In addition to these results, the Gaia-ESO Survey will leave a very important legacy, for several aspects and for many years to come.

Acceptance Date Mar 8, 2022
Publication Date Oct 18, 2022
Journal Astronomy and Astrophysics: a European journal
Print ISSN 0004-6361
Publisher EDP Sciences
Publisher URL


You might also like

Downloadable Citations