Skip to main content

Research Repository

Advanced Search

Possible pair-instability supernovae at solar metallicity from magnetic stellar progenitors

Georgy, Cyril; Meynet, Georges; Ekström, Sylvia; Wade, Gregg A.; Petit, Véronique; Keszthelyi, Zsolt; Hirschi, Raphael

Authors

Cyril Georgy

Georges Meynet

Sylvia Ekström

Gregg A. Wade

Véronique Petit

Zsolt Keszthelyi



Abstract

Near-solar metallicity (and low-redshift) pair-instability supernova (PISN) candidates challenge stellar evolution models. Indeed, at such a metallicity, even an initially very massive star generally loses so much mass by stellar winds that it will avoid the electron-positron pair-creation instability. We use recent results showing that a magnetic field at the surface of a massive star can significantly reduce its effective mass-loss rate to compute magnetic models of very massive stars (VMSs) at solar metallicity and explore the possibility that such stars end as PISNe. We implement the quenching of the mass loss produced by a surface dipolar magnetic field into the Geneva stellar evolution code and compute new stellar models with an initial mass of 200 M⊙ at solar metallicity, with and without rotation. This considerably reduces the total amount of mass lost by the star during its life. For the non-rotating model, the total (CO-core) mass of the models is 72.8 M⊙ (70.1 M⊙) at the onset of the electron-positron pair-creation instability. For the rotating model, we obtain 65.6 M⊙ (62.4 M⊙). In both cases, a significant fraction of the internal mass lies in the region where pair instability occurs in the log (T)−log (ρ) plane. The interaction of the reduced mass loss with the magnetic field efficiently brakes the surface of the rotating model, producing a strong shear and hence a very efficient mixing that makes the star evolve nearly homogeneously. The core characteristics of our models indicate that solar metallicity models of magnetic VMSs may evolve to PISNe (and pulsation PISNe).

Citation

Georgy, C., Meynet, G., Ekström, S., Wade, G. A., Petit, V., Keszthelyi, Z., & Hirschi, R. (2017). Possible pair-instability supernovae at solar metallicity from magnetic stellar progenitors. Astronomy & Astrophysics, 599, Article L5. https://doi.org/10.1051/0004-6361/201730401

Journal Article Type Article
Acceptance Date Feb 7, 2017
Online Publication Date Mar 1, 2017
Publication Date 2017-03
Deposit Date Jun 16, 2023
Journal Astronomy & Astrophysics
Print ISSN 0004-6361
Electronic ISSN 1432-0746
Publisher EDP Sciences
Peer Reviewed Peer Reviewed
Volume 599
Article Number L5
DOI https://doi.org/10.1051/0004-6361/201730401
Keywords Space and Planetary Science; Astronomy and Astrophysics; stars: evolution / stars: magnetic field / stars: massive / stars: mass-loss / supernovae: general