Lawrence W. Sheppard
Changes in large-scale climate alter spatial synchrony of aphid pests
Sheppard, Lawrence W.; Bell, James R.; Harrington, Richard; Reuman, Daniel C.
Authors
Contributors
Sheppard, LawrenceW.
Other
Bell, James R.
Other
Harrington, Richard
Other
Reuman, Daniel C.
Other
Abstract
Spatial synchrony, the tendency of distant populations to fluctuate similarly, is a major concern in ecology1,2,3,4,5,6,7,8. Except in special circumstances3,9, researchers historically had difficulty identifying drivers of synchrony in field systems5,6,10. Perhaps for this reason, the possibility9,11,12 that changes in large-scale climatic drivers may modify synchrony, thereby impacting ecosystems and human concerns, has been little examined. Here, we use wavelets to determine environmental drivers of phenological synchrony across Britain for 20 aphid species, most major crop pests. Consistently across species, changes in drivers produced large changes in aphid synchrony. Different drivers acted on different timescales: using a new wavelet analogue of the Moran theorem1, we show that on long timescales (>4 years), 80% of synchrony in aphid first flights is due to synchrony in winter climate; but this explanation accounts for less short-timescale (≤4 years) synchrony. Changes in aphid synchrony over time also differed by timescale: long-timescale synchrony fell from before 1993 to after, caused by similar changes in winter climate; whereas short-timescale synchrony increased. Shifts in winter climate are attributable to the North Atlantic Oscillation, an important climatic phenomenon7,11,13, so effects described here may influence other taxa. This study documents a new way that climatic changes influence populations, through altered Moran effects,
Citation
Sheppard, L. W., Bell, J. R., Harrington, R., & Reuman, D. C. (2016). Changes in large-scale climate alter spatial synchrony of aphid pests. Nature Climate Change, 6, Article 610-613. https://doi.org/10.1038/NCLIMATE2881
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 3, 2015 |
Online Publication Date | Dec 7, 2015 |
Publication Date | 2016-06 |
Deposit Date | Feb 9, 2024 |
Journal | Nature Climate Change |
Print ISSN | 1758-678X |
Electronic ISSN | 1758-6798 |
Publisher | Nature Publishing Group |
Peer Reviewed | Peer Reviewed |
Volume | 6 |
Article Number | 610-613 |
DOI | https://doi.org/10.1038/NCLIMATE2881 |
Publisher URL | https://www.nature.com/articles/nclimate2881 |
You might also like
Long‐term trends in migrating Brassicogethes aeneus in the UK
(2023)
Journal Article
Floral enhancement of arable field margins increases moth abundance and diversity
(2023)
Journal Article
Downloadable Citations
About Keele Repository
Administrator e-mail: research.openaccess@keele.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search