Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Magnetic Coagulometry: Towards a New Nanotechnological Tool for ex vivo Monitoring Coagulation in Human Whole Blood (2023)
Journal Article
Santana-Otero, A., Harper, A., Telling, N. D., Ortega, D., & Cabrera, D. (in press). Magnetic Coagulometry: Towards a New Nanotechnological Tool for ex vivo Monitoring Coagulation in Human Whole Blood. Nanoscale, https://doi.org/10.1039/d3nr02593d

Blood clotting disorders consisting of unwanted blood clot formation or excessive bleeding are some of the main causes of death worldwide. However, there are significant limitations in the current methods used to clinically monitoring the dynamics of... Read More about Magnetic Coagulometry: Towards a New Nanotechnological Tool for ex vivo Monitoring Coagulation in Human Whole Blood.

Iron oxide nanoparticles as a new tool for treating cardiovascular diseases (2023)
Conference Proceeding
Cabrera, D., Ranjbar, J., Santana-Otero, A., Sharifabad, M. E., Ortega, D., Telling, N. D., & Harper, A. (2023). Iron oxide nanoparticles as a new tool for treating cardiovascular diseases. . https://doi.org/10.1109/intermagshortpapers58606.2023.10228198

Thrombotic events are a major cause of death and disability worldwide. Thrombolysis with the clot busting drug tissue plasminogen activator (tPA) or thromboprophylaxis using anticoagulants such as heparin are frontline treatments for thrombotic disea... Read More about Iron oxide nanoparticles as a new tool for treating cardiovascular diseases.

Developing Biomimetic Hydrogels of the Arterial Wall as a Prothrombotic Substrate for In Vitro Human Thrombosis Models (2023)
Journal Article
Ranjbar, J., Njoroge, W., Gibbins, J. M., Roach, P., Yang, Y., & Harper, A. G. S. (2023). Developing Biomimetic Hydrogels of the Arterial Wall as a Prothrombotic Substrate for In Vitro Human Thrombosis Models. Gels, 9(6), Article 477. https://doi.org/10.3390/gels9060477

Current in vitro thrombosis models utilise simplistic 2D surfaces coated with purified components of the subendothelial matrix. The lack of a realistic humanised model has led to greater study of thrombus formation in in vivo tests in animals. Here w... Read More about Developing Biomimetic Hydrogels of the Arterial Wall as a Prothrombotic Substrate for In Vitro Human Thrombosis Models.