Towards Quantification of Eye Contacts Between Trainee Doctors and Simulated Patients in Consultation Videos
(2024)
Conference Proceeding
Deshmukh, Y., Mandal, B., Yeates, P., & Watson, J. (2024). Towards Quantification of Eye Contacts Between Trainee Doctors and Simulated Patients in Consultation Videos. In Artificial Intelligence in Healthcare (209–222). https://doi.org/10.1007/978-3-031-67278-1_17
All Outputs (64)
Visual Attention Assisted Games (2023)
Conference Proceeding
Mandal, B., Puhan, N. B., & Homi Anil, V. (2023). Visual Attention Assisted Games. In 2023 IEEE Conference on Games (CoG). https://doi.org/10.1109/cog57401.2023.10333186In this work, we propose a committee of attention models developed for improving the deep reinforcement learning frequently used for games. The game environment is manifested with spatial and temporal attention mechanisms so as to focus on important... Read More about Visual Attention Assisted Games.
Optimization and Performance Evaluation of Hybrid Deep Learning Models for Traffic Flow Prediction (2023)
Conference Proceeding
Goparaju, S. U., Biju, R., M, P., MC, B., Gangadharan, D., Mandal, B., & C, P. (2023). Optimization and Performance Evaluation of Hybrid Deep Learning Models for Traffic Flow Prediction. . https://doi.org/10.1109/vtc2023-spring57618.2023.10200600Traffic flow prediction has been regarded as a critical problem in intelligent transportation systems. An accurate prediction can help mitigate congestion and other societal problems while facilitating safer, cost and time-efficient travel. However,... Read More about Optimization and Performance Evaluation of Hybrid Deep Learning Models for Traffic Flow Prediction.
Deep Neural Network Based Attention Model for Structural Component Recognition (2023)
Conference Proceeding
Sarangi, S., & Mandal, B. (2023). Deep Neural Network Based Attention Model for Structural Component Recognition. . https://doi.org/10.5220/0011688400003417The recognition of structural components from images/videos is a highly complex task because of the appearance of huge components and their extended existence alongside, which are relatively small components. The latter is frequently overestimated or... Read More about Deep Neural Network Based Attention Model for Structural Component Recognition.
Proceedings of the 35th International BCS Human Computer Interaction Conference (HCI 2022) - Index (2022)
Conference Proceeding
de Quincey, E., Woolley, S. I., Ortolani, M., Misirli, G., Mandal, B., Kanwal, N., …Rooney, J. (2022). Proceedings of the 35th International BCS Human Computer Interaction Conference (HCI 2022) - Index. . https://doi.org/10.14236/ewic/HCI2022.0
Kernelized dynamic convolution routing in spatial and channel interaction for attentive concrete defect recognition (2022)
Journal Article
Mandal, B. (2022). Kernelized dynamic convolution routing in spatial and channel interaction for attentive concrete defect recognition. Signal Processing: Image Communication, 116818 - 116818. https://doi.org/10.1016/j.image.2022.116818Image/video based defect recognition is a crucial task in automating visual inspection of concrete structures. Although some progress has been made to automatically recognize defects in concrete structural images, significant challenges still exist.... Read More about Kernelized dynamic convolution routing in spatial and channel interaction for attentive concrete defect recognition.
MacularNet: Towards Fully Automated Attention-Based Deep CNN for Macular Disease Classification (2022)
Journal Article
Mandal, B. (2022). MacularNet: Towards Fully Automated Attention-Based Deep CNN for Macular Disease Classification. https://doi.org/10.1007/s42979-022-01024-0<jats:title>Abstract</jats:title><jats:p>In this work, we propose an attention-based deep convolutional neural network (CNN) model as an assistive computer-aided tool to classify common types of macular diseases: age-related macular degeneration, dia... Read More about MacularNet: Towards Fully Automated Attention-Based Deep CNN for Macular Disease Classification.
StructureNet: Deep Context Attention Learning for Structural Component Recognition (2022)
Conference Proceeding
Kaothalkar, A., Mandal, B., & Puhan, N. (2022). StructureNet: Deep Context Attention Learning for Structural Component Recognition. . https://doi.org/10.5220/0010872800003124Structural component recognition using images is a very challenging task due to the appearance of large components and their long continuation, existing jointly with very small components, the latter are often outcasted/missed by the existing methodo... Read More about StructureNet: Deep Context Attention Learning for Structural Component Recognition.
Perturbed Composite Attention Model for Macular Optical Coherence Tomography Image Classification (2021)
Journal Article
Mishra, S. S., Mandal, B., & Puhan, N. B. (2022). Perturbed Composite Attention Model for Macular Optical Coherence Tomography Image Classification. IEEE Transactions on Artificial Intelligence, 3(4), 625-635. https://doi.org/10.1109/tai.2021.3135797In this article, we propose a deep architecture stemming from a perturbed composite attention mechanism with the following two novel attention modules: Multilevel perturbed spatial attention (MPSA) and multidimension attention (MDA) for macular optic... Read More about Perturbed Composite Attention Model for Macular Optical Coherence Tomography Image Classification.
Stand-Alone Composite Attention Network for Concrete Structural Defect Classification (2021)
Journal Article
Bhattacharya, G., Puhan, N. B., & Mandal, B. (2022). Stand-Alone Composite Attention Network for Concrete Structural Defect Classification. IEEE Transactions on Artificial Intelligence, 3(2), 265-274. https://doi.org/10.1109/tai.2021.3114385
Interleaved Deep Artifacts-Aware Attention Mechanism for Concrete Structural Defect Classification. (2021)
Journal Article
Mandal, B. (2021). Interleaved Deep Artifacts-Aware Attention Mechanism for Concrete Structural Defect Classification. IEEE Transactions on Image Processing, 6957 - 6969. https://doi.org/10.1109/TIP.2021.3100556Automatic machine classification of concrete structural defects in images poses significant challenges because of multitude of problems arising from the surface texture, such as presence of stains, holes, colors, poster remains, graffiti, marking and... Read More about Interleaved Deep Artifacts-Aware Attention Mechanism for Concrete Structural Defect Classification..
Deep Regularized Discriminative Network (2021)
Journal Article
Mandal, B. (2021). Deep Regularized Discriminative Network. https://doi.org/10.1007/s42979-021-00647-zTraditional linear discriminant analysis (LDA) approach discards the eigenvalues which are very small or equivalent to zero, but quite often eigenvectors corresponding to zero eigenvalues are the important dimensions for discriminant analysis. We pro... Read More about Deep Regularized Discriminative Network.
GlaucoNet: Patch-Based Residual Deep Learning Network for Optic Disc and Cup Segmentation Towards Glaucoma Assessment (2021)
Journal Article
Mandal, B. (2021). GlaucoNet: Patch-Based Residual Deep Learning Network for Optic Disc and Cup Segmentation Towards Glaucoma Assessment. https://doi.org/10.1007/s42979-021-00491-1Glaucoma is a chronic eye condition causing irreversible vision damage and presently stands as the second leading cause of blindness worldwide. Damaged optic disc and optic cup assessment in color fundus image has been shown to be a promising method... Read More about GlaucoNet: Patch-Based Residual Deep Learning Network for Optic Disc and Cup Segmentation Towards Glaucoma Assessment.
Variance-guided attention-based twin deep network for cross-spectral periocular recognition (2020)
Journal Article
Behera, S. S., Mishra, S. S., Mandal, B., & Puhan, N. B. (2020). Variance-guided attention-based twin deep network for cross-spectral periocular recognition. Image and Vision Computing, 104, 104016. https://doi.org/10.1016/j.imavis.2020.104016
Multi-Deformation Aware Attention Learning for Concrete Structural Defect Classification (2020)
Journal Article
Bhattacharya, G., Mandal, B., & Puhan, N. B. (2020). Multi-Deformation Aware Attention Learning for Concrete Structural Defect Classification. IEEE Transactions on Circuits and Systems for Video Technology, 31(9), 3707-3713. https://doi.org/10.1109/TCSVT.2020.3028008In this work, we propose a deep multi-deformation aware attention learning (MDAL) architecture comprising of multi-scale committee of attention (MSCA) and fine-grained feature induced attention (FGIA) modules to classify multi-target multi-class defe... Read More about Multi-Deformation Aware Attention Learning for Concrete Structural Defect Classification.
Deep Convolutional Neural Network for Double-Identity Fingerprint Detection (2020)
Journal Article
Goel, I., Puhan, N. B., & Mandal, B. (2020). Deep Convolutional Neural Network for Double-Identity Fingerprint Detection. IEEE Sensors Letters, 4(5), 1-4. https://doi.org/10.1109/lsens.2020.2987863
Twin Deep Convolutional Neural Network-based Cross-spectral Periocular Recognition (2020)
Conference Proceeding
Behera, S. S., Mandal, B., & Puhan, N. B. (2020). Twin Deep Convolutional Neural Network-based Cross-spectral Periocular Recognition. . https://doi.org/10.1109/ncc48643.2020.9056008
Multi-level Dual-attention Based CNN for Macular Optical Coherence Tomography Classification (2019)
Journal Article
Mandal, B. (2019). Multi-level Dual-attention Based CNN for Macular Optical Coherence Tomography Classification. IEEE Signal Processing Letters, 1793-1797. https://doi.org/10.1109/LSP.2019.2949388In this letter, we propose a multi-level dual-attention model to classify two common macular diseases, age-related macular degeneration (AMD) and diabetic macular edema (DME) from normal macular eye conditions using optical coherence tomography (OCT)... Read More about Multi-level Dual-attention Based CNN for Macular Optical Coherence Tomography Classification.
Towards Automatic Screening of Typical and Atypical Behaviors in Children With Autism (2019)
Presentation / Conference
Cook, A., Mandal, B., Berry, D., & Johnson, M. (2019, October). Towards Automatic Screening of Typical and Atypical Behaviors in Children With Autism. Paper presented at 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Washington, DC, USAAutism spectrum disorders (ASD) impact the cognitive, social, communicative and behavioral abilities of an individual. The development of new clinical decision support systems is of importance in reducing the delay between presentation of symptoms an... Read More about Towards Automatic Screening of Typical and Atypical Behaviors in Children With Autism.
Improved Lifelog Ego-centric Video Summarization Using Ensemble of Deep Learned Object Features (2019)
Presentation / Conference
Mandal, B., & Mainwaring, P. (2019, September). Improved Lifelog Ego-centric Video Summarization Using Ensemble of Deep Learned Object Features. Presented at 30th British Machine Vision Conference, CardiffThe ImageCLEF 2017 lifelog summarization challenge [10, 12] was established to develop a benchmark for summarizing egocentric lifelogging videos based on our daily activities, such as ‘commute to work’ or ‘cooking at home’. In this paper, we propose... Read More about Improved Lifelog Ego-centric Video Summarization Using Ensemble of Deep Learned Object Features.