Paul Truman p.j.truman@keele.ac.uk
Hopf-Galois module structure of tame biquadratic extensions
Truman
Authors
Abstract
Let $ p $ be an odd prime number, $ K $ a number field containing a primitive $ p^{th} $ root of unity, and $ L $ a Galois extension of $ K $ with Galois group isomorphic to $ C_{p} \times C_{p} $. We study in detail the local and global structure of the ring of integers $ {\mathfrak{O}}_{L} $ as a module over its associated order $ {\mathfrak{A}}_{H} $ in each of the Hopf algebras $ H $ giving nonclassical Hopf-Galois structures on the extension, complementing the $ p=2 $ case considered in [12]. For each Hopf algebra giving a nonclassical Hopf-Galois structure on $ L/K $ we show that $ {\mathfrak{O}}_{L} $ is locally free over its associated order $ {\mathfrak{A}}_{H} $ in $ H $, compute local generators, and determine necessary and sufficient conditions for $ {\mathfrak{O}}_{L} $ to be free over $ {\mathfrak{A}}_{H} $.
Citation
Truman. (2016). Hopf-Galois module structure of tame biquadratic extensions. https://doi.org/10.5802/jtnb.953
Acceptance Date | Sep 5, 2014 |
---|---|
Publication Date | Jan 1, 2016 |
Journal | Journal de Theorie des Nombres de Bordeaux |
Print ISSN | 1246-7405 |
Pages | 557-582 |
DOI | https://doi.org/10.5802/jtnb.953 |
Keywords | Hopf-Galois Theory; Galois module structure; tame extension |
Publisher URL | https://doi.org/10.5802/jtnb.953 |
Files
BiquadraticJTNB.pdf
(294 Kb)
PDF
You might also like
On ρ-conjugate Hopf–Galois structures
(2023)
Journal Article
Hopf Algebras and Galois Module Theory
(2021)
Book
Abelian fixed point free endomorphisms and the Yang-Baxter equation
(2020)
Journal Article
Opposite Skew Left Braces and Applications
(2020)
Journal Article
Isomorphism problems for Hopf-Galois structures on separable field extensions
(2019)
Journal Article
Downloadable Citations
About Keele Repository
Administrator e-mail: research.openaccess@keele.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search