Skip to main content

Research Repository

Advanced Search

Aeroacoustic response of an array of tubes with and without bias-flow

Surendran, Aswathy; Heckl, Maria A.; Peerlings, Luck; Boij, Susann; Bodén, Hans; Hirschberg, Avraham

Aeroacoustic response of an array of tubes with and without bias-flow Thumbnail


Authors

Aswathy Surendran

Luck Peerlings

Susann Boij

Hans Bodén

Avraham Hirschberg



Abstract

Heat exchangers, consisting of tube arrays in a cross-flow are a vital component of power generation systems. They are of interest from an acoustic point of view, because they can reflect, transmit and absorb an incident sound wave; in other words, they have the potential to act as a sound absorber and even as a passive control device to prevent a thermoacoustic instability in the power generation system. This paper presents a fundamental study of the aeroacoustic response of a tube array with and without bias-flow (also called cross-flow). The study has a theoretical and experimental side. On the theoretical side, a new model, based on the assumption of quasi-steady flow, was developed to predict the acoustic reflection and transmission coefficient of a tube array with bias-flow. Also, the model by Huang and Heckl (Huang and Heckl, 1993, Acustica 78, 191–200) for the case without bias-flow was evaluated. On the experimental side, flow-duct experiments using a multi-microphone technique were performed to validate the predictions from both models. The agreement was found to be very good for low frequencies. The measurements revealed the limit of validity of the quasi-steady model in terms of the Strouhal number. Although this limit is quite low, our quasi-steady model can serve as a valuable tool for designers of heat exchangers.

Citation

Surendran, A., Heckl, M. A., Peerlings, L., Boij, S., Bodén, H., & Hirschberg, A. (2018). Aeroacoustic response of an array of tubes with and without bias-flow. Journal of Sound and Vibration, 454, 1 -16. https://doi.org/10.1016/j.jsv.2018.07.022

Journal Article Type Article
Acceptance Date Jul 12, 2018
Online Publication Date Jul 30, 2018
Publication Date Nov 10, 2018
Publicly Available Date May 26, 2023
Journal Journal of Sound and Vibration
Print ISSN 0022-460X
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 454
Pages 1 -16
DOI https://doi.org/10.1016/j.jsv.2018.07.022
Keywords aeroacoustics, low-frequency response, tube array, heat exchanger, low mach number bias-flow, duct flow
Publisher URL http://doi.org/10.1016/j.jsv.2018.07.022

Files






You might also like



Downloadable Citations