Skip to main content

Research Repository

Advanced Search

Metal-Dependent Cytotoxic and Kinesin Spindle Protein Inhibitory Activity of Ru, Os, Rh, and Ir Half-Sandwich Complexes of Ispinesib-Derived Ligands

Reynisson

Metal-Dependent Cytotoxic and Kinesin Spindle Protein Inhibitory Activity of Ru, Os, Rh, and Ir Half-Sandwich Complexes of Ispinesib-Derived Ligands Thumbnail


Authors



Abstract

Ispinesib is a potent inhibitor of kinesin spindle protein (KSP), which has been identified as a promising target for antimitotic anticancer drugs. Herein, we report the synthesis of half-sandwich complexes of Ru, Os, Rh, and Ir bearing the ispinesib-derived N,N-bidentate ligands (R)- and (S)-2-(1-amino-2-methylpropyl)-3-benzyl-7-chloroquinazolin-4(3H)-one and studies on their chemical and biological properties. Using the enantiomerically pure (R)- and (S)-forms of the ligand, depending on the organometallic moiety, either the SM,R or RM,S diastereomers, respectively, were observed in the molecular structures of the Ru- and Os(cym) (cym = ?6-p-cymene) compounds, whereas the RM,R or SM,S diastereomers were found for the Rh- and Ir(Cp*) (Cp* = ?5-pentamethylcyclopentadienyl) derivatives. However, density functional theory (DFT) calculations suggest that the energy difference between the diastereomers is very small, and therefore a mixture of both will be present in solution. The organometallics exhibited varying antiproliferative activity in a series of human cancer cell lines, with the complexes featuring the (R)-enantiomer of the ligand being more potent than the (S)-configured counterparts. Notably, the Rh and Ir complexes demonstrated high KSP inhibitory activity, even at 1 nM concentration, which was independent of the chirality of the ligand, whereas the Ru and especially the Os derivatives were much less active.

Citation

Reynisson. (2020). Metal-Dependent Cytotoxic and Kinesin Spindle Protein Inhibitory Activity of Ru, Os, Rh, and Ir Half-Sandwich Complexes of Ispinesib-Derived Ligands. Inorganic Chemistry, 14879-14890. https://doi.org/10.1021/acs.inorgchem.0c00957

Acceptance Date Oct 1, 2020
Publication Date Oct 1, 2020
Journal Inorganic Chemistry
Print ISSN 0020-1669
Publisher American Chemical Society
Pages 14879-14890
DOI https://doi.org/10.1021/acs.inorgchem.0c00957
Publisher URL http://doi.org/10.1021/acs.inorgchem.0c00957

Files






You might also like



Downloadable Citations