Pierre Maxted p.maxted@keele.ac.uk
The EBLM project – IX. Five fully convective M-dwarfs, precisely measured with CHEOPS and TESS light curves
Maxted
Authors
Abstract
Eclipsing binaries are important benchmark objects to test and calibrate stellar structure and evolution models. This is especially true for binaries with a fully convective M-dwarf component for which direct measurements of these stars' masses and radii are difficult using other techniques. Within the potential of M-dwarfs to be exoplanet host stars, the accuracy of theoretical predictions of their radius and effective temperature as a function of their mass is an active topic of discussion. Not only the parameters of transiting exoplanets but also the success of future atmospheric characterization relies on accurate theoretical predictions. We present the analysis of five eclipsing binaries with low-mass stellar companions out of a subsample of 23, for which we obtained ultra-high-precision light curves using the CHEOPS satellite. The observation of their primary and secondary eclipses are combined with spectroscopic measurements to precisely model the primary parameters and derive the M-dwarfs mass, radius, surface gravity, and effective temperature estimates using the PYCHEOPS data analysis software. Combining these results to the same set of parameters derived from TESS light curves, we find very good agreement (better than 1 percent for radius and better than 0.2 percent for surface gravity). We also analyse the importance of precise orbits from radial velocity measurements and find them to be crucial to derive M-dwarf radii in a regime below 5 percent accuracy. These results add five valuable data points to the mass-radius diagram of fully convective M-dwarfs.
Citation
Maxted. (2022). The EBLM project – IX. Five fully convective M-dwarfs, precisely measured with CHEOPS and TESS light curves. Monthly Notices of the Royal Astronomical Society, 519(3), 3546–3563. https://doi.org/10.1093/mnras/stac2565
Acceptance Date | Sep 12, 2022 |
---|---|
Publication Date | Sep 12, 2022 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Oxford University Press |
Peer Reviewed | Peer Reviewed |
Volume | 519 |
Issue | 3 |
Pages | 3546–3563 |
DOI | https://doi.org/10.1093/mnras/stac2565 |
Keywords | binaries: eclipsing; stars: fundamental parameters; stars: low-mass; techniques: photometric; techniques: spectroscopic |
Publisher URL | https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/stac2565/6696393 |
Files
stac2565.pdf
(1.2 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
TOI-5678b: A 48-day transiting Neptune-mass planet characterized with CHEOPS and HARPS
(2023)
Journal Article
Refined parameters of the HD 22946 planetary system and the true orbital period of planet d
(2023)
Journal Article
A new dynamical modeling of the WASP-47 system with CHEOPS observations
(2023)
Journal Article
The geometric albedo of the hot Jupiter HD 189733b measured with CHEOPS,
(2023)
Journal Article
Downloadable Citations
About Keele Repository
Administrator e-mail: research.openaccess@keele.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search