Skip to main content

Research Repository

Advanced Search

Novel Wolbachia strains in Anopheles malaria vectors from Sub-Saharan Africa

Jeffries, Claire L.; Lawrence, Gena G.; Golovko, George; Kristan, Mojca; Orsborne, James; Spence, Kirstin; Hurn, Eliot; Bandibabone, Janvier; Tantely, Luciano M.; Raharimalala, Fara N.; Keita, Kalil; Camara, Denka; Barry, Yaya; Wat’senga, Francis; Manzambi, Emile Z.; Afrane, Yaw A.; Mohammed, Abdul R.; Abeku, Tarekegn A.; Hegde, Shivanand; Khanipov, Kamil; Pimenova, Maria; Fofanov, Yuriy; Boyer, Sebastien; Irish, Seth R.; Hughes, Grant L.; Walker, Thomas

Authors

Claire L. Jeffries

Gena G. Lawrence

George Golovko

Mojca Kristan

James Orsborne

Kirstin Spence

Eliot Hurn

Janvier Bandibabone

Luciano M. Tantely

Fara N. Raharimalala

Kalil Keita

Denka Camara

Yaya Barry

Francis Wat’senga

Emile Z. Manzambi

Yaw A. Afrane

Abdul R. Mohammed

Tarekegn A. Abeku

Kamil Khanipov

Maria Pimenova

Yuriy Fofanov

Sebastien Boyer

Seth R. Irish

Grant L. Hughes

Thomas Walker



Abstract

Background: Wolbachia, a common insect endosymbiotic bacterium that can influence pathogen transmission and manipulate host reproduction, has historically been considered absent from the Anopheles (An.) genera, but has recently been found in An. gambiae s.l. populations in West Africa. As there are numerous Anopheles species that have the capacity to transmit malaria, we analysed a range of species across five malaria endemic countries to determine Wolbachia prevalence rates, characterise novel Wolbachia strains and determine any correlation between the presence of Plasmodium, Wolbachia and the competing bacterium Asaia.
Methods: Anopheles adult mosquitoes were collected from five malaria-endemic countries: Guinea, Democratic Republic of the Congo (DRC), Ghana, Uganda and Madagascar, between 2013 and 2017. Molecular analysis was undertaken using quantitative PCR, Sanger sequencing, Wolbachia multilocus sequence typing (MLST) and high-throughput amplicon sequencing of the bacterial 16S rRNA gene.
Results: Novel Wolbachia strains were discovered in five species: An. coluzzii, An. gambiae s.s., An. arabiensis, An. moucheti and An. species A, increasing the number of Anopheles species known to be naturally infected. Variable prevalence rates in different locations were observed and novel strains were phylogenetically diverse, clustering with Wolbachia supergroup B strains. We also provide evidence for resident strain variants within An. species A. Wolbachia is the dominant member of the microbiome in An. moucheti and An. species A but present at lower densities in An. coluzzii. Interestingly, no evidence of Wolbachia/Asaia co-infections was seen and Asaia infection densities were shown to be variable and location dependent.
Conclusions: The important discovery of novel Wolbachia strains in Anopheles provides greater insight into the prevalence of resident Wolbachia strains in diverse malaria vectors. Novel Wolbachia strains (particularly high-density strains) are ideal candidate strains for transinfection to create stable infections in other Anopheles mosquito species, which could be used for population replacement or suppression control strategies.

Citation

Jeffries, C. L., Lawrence, G. G., Golovko, G., Kristan, M., Orsborne, J., Spence, K., …Walker, T. (2018). Novel Wolbachia strains in Anopheles malaria vectors from Sub-Saharan Africa. Wellcome Open Research, 3(113),

Journal Article Type Article
Online Publication Date Sep 12, 2018
Publication Date Nov 27, 2018
Deposit Date Feb 13, 2024
Journal Wellcome Open Res
Print ISSN 2398-502X
Publisher Taylor and Francis
Peer Reviewed Peer Reviewed
Volume 3
Issue 113
Publisher URL https://wellcomeopenresearch.org/articles/3-113/v2