Christopher Chapman c.j.chapman@keele.ac.uk
Near-field scattering by the method of locally subsonic waves
Chapman, C. J.; Hawkins, S. C.
Authors
S. C. Hawkins
Abstract
A technique is developed for determining the sound field scattered by a compact body when it is close enough to an acoustic source to be in its near field. Our approach is based on the fact that large regions of many near fields may be well approximated at each point in space by a subsonic plane wave (also called an inhomogeneous plane wave, or an evanescent wave). Such a wave is defined by the property that in one direction it propagates with subsonic phase speed, while in a perpendicular direction it has exponential amplitude variation. Hence by defining a canonical problem, compact scattering of a subsonic plane wave, and solving it, we are able to give a unified analytical treatment of many near-field scattering problems. Our approach draws on the formulae of Rayleigh scattering (as applied to an incident field with complex wavenumber) and the asymptotic theory of the wave equation. For an arbitrary three-dimensional multipole, we determine in full detail how its subsonic wave structure depends on the spherical harmonic parameters (m, n), and show that our approach has a very large region of validity.
Citation
Chapman, C. J., & Hawkins, S. C. (2024). Near-field scattering by the method of locally subsonic waves. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 480(2292), 1 - 26. https://doi.org/10.1098/rspa.2023.0720
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 16, 2024 |
Online Publication Date | Jun 26, 2024 |
Publication Date | 2024-06 |
Deposit Date | Jun 27, 2024 |
Publicly Available Date | Jun 27, 2024 |
Journal | Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences |
Print ISSN | 1364-5021 |
Electronic ISSN | 1471-2946 |
Publisher | The Royal Society |
Peer Reviewed | Peer Reviewed |
Volume | 480 |
Issue | 2292 |
Pages | 1 - 26 |
DOI | https://doi.org/10.1098/rspa.2023.0720 |
Keywords | Debye approximation; modulated dipole; three-dimensional multipole; phase Mach number; Rayleigh scattering |
Public URL | https://keele-repository.worktribe.com/output/858013 |
Publisher URL | https://royalsocietypublishing.org/doi/10.1098/rspa.2023.0720#d1e14159 |
Additional Information | Received: 2023-09-28; Accepted: 2024-04-16; Published: 2024-06-26 |
Files
24cjc Hawkins.prsa Locally Subsonic Waves
(2.3 Mb)
PDF
Licence
https://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
Copyright Statement
© 2024 The Authors.
Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
You might also like
A Wronskian method for elastic waves propagating along a tube
(2021)
Journal Article
Fractional power series and the method of dominant balances
(2021)
Journal Article
Canonical sound fields in the frequency-domain theory of supersonic leading-edge noise
(2019)
Journal Article
Downloadable Citations
About Keele Repository
Administrator e-mail: research.openaccess@keele.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search