Skip to main content

Research Repository

Advanced Search

Masting ontogeny: the largest masting benefits accrue to the largest trees

Szymkowiak, Jakub; Hacket-Pain, Andrew; Kelly, Dave; Foest, Jessie; Kondrat, Katarzyna; Thomas, Peter; Lageard, Jonathan; Gratzer, Georg; Pesendorfer, Mario B; Bogdziewicz, Michał

Authors

Jakub Szymkowiak

Andrew Hacket-Pain

Dave Kelly

Jessie Foest

Katarzyna Kondrat

Jonathan Lageard

Georg Gratzer

Mario B Pesendorfer

Michał Bogdziewicz



Abstract

Background and Aims. Both plants and animals display considerable variation in their phenotypic traits as they grow. This variation helps organisms to adapt to specific challenges at different stages of development. Masting, the variable and synchronized seed production across years by a population of plants, is a common reproductive strategy in perennial plants that can enhance reproductive efficiency through increasing pollination efficiency and decreasing seed predation. Masting represents a population-level phenomenon generated from individual plant behaviors. While the developmental trajectory of individual plants influences their masting behavior, the translation of such changes into benefits derived from masting remains unexplored.

Methods and Key Results. We used 43 years of seed production monitoring in European beech (Fagus sylvatica) to address that gap. The largest improvements in reproductive efficiency from masting happen in the largest trees. Masting leads to a 48-fold reduction in seed predation in large, compared to 28-fold in small trees. Masting yields an 6-fold increase in pollination efficiency in large, compared to 2.5-fold in small trees. Paradoxically, although the largest trees show the biggest reproductive efficiency benefits from masting, large trees mast less strongly than small trees.

Conclusions. That apparently suboptimal allocation of effort across years by large plants may be a consequence of anatomical constraints or bet-hedging. Ontogenetic shifts in individual masting behavior and associated variable benefits have implications for the reproductive potential of plant populations as their age distribution changes, with applications in plant conservation and management

Citation

Szymkowiak, J., Hacket-Pain, A., Kelly, D., Foest, J., Kondrat, K., Thomas, P., …Bogdziewicz, M. (in press). Masting ontogeny: the largest masting benefits accrue to the largest trees. Annals of Botany, https://doi.org/10.1093/aob/mcae197

Journal Article Type Article
Acceptance Date Nov 8, 2024
Online Publication Date Nov 9, 2024
Deposit Date Feb 11, 2025
Journal Annals of Botany
Print ISSN 0305-7364
Publisher Oxford University Press
Peer Reviewed Peer Reviewed
DOI https://doi.org/10.1093/aob/mcae197
Public URL https://keele-repository.worktribe.com/output/924136
Publisher URL https://ecoevorxiv.org/repository/view/7676/