Skip to main content

Research Repository

Advanced Search

All Outputs (6)

Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations. (2015)
Journal Article
Adams, C., Rai, A., Sneddon, G., Yiu, H., Polyak, B., & Chari, D. (2015). Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations. Nanomedicine, 11, 19--29. https://doi.org/10.1016/j.nano.2014.07.001

Safe and efficient delivery of therapeutic cells to sites of injury/disease in the central nervous system is a key goal for the translation of clinical cell transplantation therapies. Recently, 'magnetic cell localization strategies' have emerged as... Read More about Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations..

Deploying clinical grade magnetic nanoparticles with magnetic fields to magnetolabel neural stem cells in adherent versus suspension cultures (2015)
Journal Article
Weinberg, D., Adams, C., & Chari, D. (2015). Deploying clinical grade magnetic nanoparticles with magnetic fields to magnetolabel neural stem cells in adherent versus suspension cultures. RSC advances, 5, 43353-43360. https://doi.org/10.1039/c5ra07481a

Neural stem cells (NSCs) have a high therapeutic potential for patients with neurological disease/injury given their neuroregenerative and immunomodulatory capabilities. In recent years, magnetic nanoparticles (MNPs) have been used as contrast agents... Read More about Deploying clinical grade magnetic nanoparticles with magnetic fields to magnetolabel neural stem cells in adherent versus suspension cultures.

Using magnetic nanoparticles for gene transfer to neural stem cells: stem cell propagation method influences outcomes (2015)
Journal Article
Pickard, M., Adams, C., Barraud, P., & Chari, D. (2015). Using magnetic nanoparticles for gene transfer to neural stem cells: stem cell propagation method influences outcomes. Journal of Functional Biomaterials, 6, 259-279. https://doi.org/10.3390/jfb6020259

Genetically engineered neural stem cell (NSC) transplants offer a key strategy to augment neural repair by releasing therapeutic biomolecules into injury sites. Genetic modification of NSCs is heavily reliant on viral vectors but cytotoxic effects ha... Read More about Using magnetic nanoparticles for gene transfer to neural stem cells: stem cell propagation method influences outcomes.

Development of a nanomaterial bio-screening platform for neurological applications (2015)
Journal Article
Jenkins, S., Roach, P., & Chari, D. (2015). Development of a nanomaterial bio-screening platform for neurological applications. Nanomedicine: Nanotechnology, Biology and Medicine, 77 - 87. https://doi.org/10.1016/j.nano.2014.07.010

Nanoparticle platforms are being intensively investigated for neurological applications. Current biological models used to identify clinically relevant materials have major limitations, e.g. technical/ethical issues with live animal experimentation,... Read More about Development of a nanomaterial bio-screening platform for neurological applications.