Skip to main content

Research Repository

Advanced Search

Outputs (2)

AAV9-mediated SMN gene therapy rescues cardiac desmin but not lamin A/C and elastin dysregulation in Smn2B/- spinal muscular atrophy mice Human Molecular Genetics (2023)
Journal Article
Brown, S., Šoltić, D., Synowsky, S. A., Shirran, S. L., Chilcott, E., Shorrock, H. K., …Fuller, H. (2023). AAV9-mediated SMN gene therapy rescues cardiac desmin but not lamin A/C and elastin dysregulation in Smn2B/- spinal muscular atrophy mice Human Molecular Genetics. Human Molecular Genetics, Article ddad121. https://doi.org/10.1093/hmg/ddad121

Structural, functional and molecular cardiac defects have been reported in spinal muscular atrophy (SMA) patients and mouse models. Previous quantitative proteomics analyses demonstrated widespread molecular defects in the severe Taiwanese SMA mouse... Read More about AAV9-mediated SMN gene therapy rescues cardiac desmin but not lamin A/C and elastin dysregulation in Smn2B/- spinal muscular atrophy mice Human Molecular Genetics.

Enhanced expression of the human Survival motor neuron 1 gene from a codon-optimised cDNA transgene in vitro and in vivo (2023)
Journal Article
Nafchi, N., Chilcott, E., Owen, S., Fuller, H., Bowerman, M., & Yáñez-Muñoz, R. (2023). Enhanced expression of the human Survival motor neuron 1 gene from a codon-optimised cDNA transgene in vitro and in vivo. Gene Therapy, 30, 812–825. https://doi.org/10.1038/s41434-023-00406-0

Spinal muscular atrophy (SMA) is a neuromuscular disease particularly characterised by degeneration of ventral motor neurons. Survival motor neuron (SMN) 1 gene mutations cause SMA, and gene addition strategies to replace the faulty SMN1 copy are a t... Read More about Enhanced expression of the human Survival motor neuron 1 gene from a codon-optimised cDNA transgene in vitro and in vivo.