Skip to main content

Research Repository

Advanced Search

Applying quantitative bias analysis to estimate the plausible effects of selection bias in a cluster randomised controlled trial: secondary analysis of the Primary care Osteoarthritis Screening Trial (POST).

Barnett, L.A.; Mallen, C.D; Lewis, A.M.; Peat, G.

Applying quantitative bias analysis to estimate the plausible effects of selection bias in a cluster randomised controlled trial: secondary analysis of the Primary care Osteoarthritis Screening Trial (POST). Thumbnail


Authors

L.A. Barnett

G. Peat



Abstract

BACKGROUND: Selection bias is a concern when designing cluster randomised controlled trials (c-RCT). Despite addressing potential issues at the design stage, bias cannot always be eradicated from a trial design. The application of bias analysis presents an important step forward in evaluating whether trial findings are credible. The aim of this paper is to give an example of the technique to quantify potential selection bias in c-RCTs. METHODS: This analysis uses data from the Primary care Osteoarthritis Screening Trial (POST). The primary aim of this trial was to test whether screening for anxiety and depression, and providing appropriate care for patients consulting their GP with osteoarthritis would improve clinical outcomes. Quantitative bias analysis is a seldom-used technique that can quantify types of bias present in studies. Due to lack of information on the selection probability, probabilistic bias analysis with a range of triangular distributions was also used, applied at all three follow-up time points; 3, 6, and 12 months post consultation. A simple bias analysis was also applied to the study. RESULTS: Worse pain outcomes were observed among intervention participants than control participants (crude odds ratio at 3, 6, and 12 months: 1.30 (95% CI 1.01, 1.67), 1.39 (1.07, 1.80), and 1.17 (95% CI 0.90, 1.53), respectively). Probabilistic bias analysis suggested that the observed effect became statistically non-significant if the selection probability ratio was between 1.2 and 1.4. Selection probability ratios of?>?1.8 were needed to mask a statistically significant benefit of the intervention. CONCLUSIONS: The use of probabilistic bias analysis in this c-RCT suggested that worse outcomes observed in the intervention arm could plausibly be attributed to selection bias. A very large degree of selection of bias was needed to mask a beneficial effect of intervention making this interpretation less plausible.

Citation

Barnett, L., Mallen, C., Lewis, A., & Peat, G. (2017). Applying quantitative bias analysis to estimate the plausible effects of selection bias in a cluster randomised controlled trial: secondary analysis of the Primary care Osteoarthritis Screening Trial (POST). Trials, 18, 585 - ?. https://doi.org/10.1186/s13063-017-2329-1

Journal Article Type Article
Acceptance Date Nov 6, 2017
Publication Date Dec 4, 2017
Journal Trials
Publisher Springer Verlag
Peer Reviewed Peer Reviewed
Volume 18
Article Number 585
Pages 585 - ?
DOI https://doi.org/10.1186/s13063-017-2329-1
Keywords Quantitative bias analysis; c-RCTs; Osteoarthritis
Publisher URL https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-017-2329-1#Abs1

Files




You might also like



Downloadable Citations