Pierre Maxted p.maxted@keele.ac.uk
The Surface Brightness-color Relations Based on Eclipsing Binary Stars: Toward Precision Better than 1% in Angular Diameter Predictions
Maxted
Authors
Abstract
In this study we investigate the calibration of surface brightness–color (SBC) relations based solely on eclipsing binary stars. We selected a sample of 35 detached eclipsing binaries with trigonometric parallaxes from Gaia DR1 or Hipparcos whose absolute dimensions are known with an accuracy better than 3% and that lie within 0.3 kpc from the Sun. For the purpose of this study, we used mostly homogeneous optical and near-infrared photometry based on the Tycho-2 and 2MASS catalogs. We derived geometric angular diameters for all stars in our sample with a precision better than 10%, and for 11 of them with a precision better than 2%. The precision of individual angular diameters of the eclipsing binary components is currently limited by the precision of the geometric distances (~5% on average). However, by using a subsample of systems with the best agreement between their geometric and photometric distances, we derived the precise SBC relations based only on eclipsing binary stars. These relations have precisions that are comparable to the best available SBC relations based on interferometric angular diameters, and they are fully consistent with them. With very precise Gaia parallaxes becoming available in the near future, angular diameters with a precision better than 1% will be abundant. At that point, the main uncertainty in the total error budget of the SBC relations will come from transformations between different photometric systems, disentangling of component magnitudes, and for hot OB stars, the main uncertainty will come from the interstellar extinction determination. We argue that all these issues can be overcome with modern high-quality data and conclude that a precision better than 1% is entirely feasible.
Citation
Maxted. (2017). The Surface Brightness-color Relations Based on Eclipsing Binary Stars: Toward Precision Better than 1% in Angular Diameter Predictions. Astrophysical Journal, https://doi.org/10.3847/1538-4357/aa5d56
Acceptance Date | Jan 25, 2017 |
---|---|
Publication Date | Feb 27, 2017 |
Journal | Astrophysical Journal |
Print ISSN | 0004-637X |
Publisher | American Astronomical Society |
DOI | https://doi.org/10.3847/1538-4357/aa5d56 |
Keywords | binaries: eclipsing, solar neighborhood, stars: fundamental parameters |
Publisher URL | https://iopscience.iop.org/article/10.3847/1538-4357/aa5d56 |
Files
P Maxted - The surface brightness-color relations based on eclipsing binary stars....pdf
(938 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
TOI-5678b: A 48-day transiting Neptune-mass planet characterized with CHEOPS and HARPS
(2023)
Journal Article
Refined parameters of the HD 22946 planetary system and the true orbital period of planet d
(2023)
Journal Article
A new dynamical modeling of the WASP-47 system with CHEOPS observations
(2023)
Journal Article
The geometric albedo of the hot Jupiter HD 189733b measured with CHEOPS,
(2023)
Journal Article
Downloadable Citations
About Keele Repository
Administrator e-mail: research.openaccess@keele.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search