F Rizzuti
Constraints on stellar rotation from the evolution of Sr and Ba in the Galactic halo
Rizzuti, F; Cescutti, G; Matteucci, F; Chieffi, A; Hirschi, R; Limongi, M; Saro, A
Abstract
Recent studies show that the chemical evolution of Sr and Ba in the Galaxy can be explained if different production sites, hosting r- and s-processes, are taken into account. However, the question of unambiguously identifying these sites is still unsolved. Massive stars are shown to play an important role in the production of s-material if rotation is considered. In this work, we study in detail the contribution of rotating massive stars to the production of Sr and Ba, in order to explain their chemical evolution, but also to constrain the rotational behaviour of massive stars. A stochastic chemical evolution model was employed to reproduce the enrichment of the Galactic halo. We developed new methods for model-data comparison which help to objectively compare the stochastic results to the observations. We employed these methods to estimate the value of free parameters which describe the rotation of massive stars, assumed to be dependent on the stellar metallicity. We constrain the parameters using the observations for Sr and Ba. Employing these parameters for rotating massive stars in our stochastic model, we are able to correctly reproduce the chemical evolution of Sr and Ba, but also Y, Zr and La. The data supports a decrease of both the mean rotational velocities and their dispersion with increasing metallicity. Our results show that a metallicity-dependent rotation is a necessary assumption to explain the s-process in massive stars. Our novel methods of model-data comparison represent a promising tool for future galactic chemical evolution studies.
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 20, 2021 |
Online Publication Date | Jan 20, 2021 |
Publication Date | 2021-04 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Publisher | Oxford University Press |
Peer Reviewed | Peer Reviewed |
Volume | 502 |
Issue | 2 |
Pages | 2495-2507 |
DOI | https://doi.org/10.1093/mnras/stab158 |
Keywords | nuclear reactions, nucleosynthesis, abundances, stars: massive, stars: rotation, Galaxy: abundances, Galaxy: evolution |
Publisher URL | http://doi.org/10.1093/mnras/stab158 |
Files
stab158.pdf
(693 Kb)
PDF
You might also like
The Nuclear Reaction Network WinNet
(2023)
Journal Article
Stellar wind yields of very massive stars
(2023)
Journal Article
3D stellar evolution: hydrodynamic simulations of a complete burning phase in a massive star
(2023)
Journal Article
Turbulence and nuclear reactions in 3D hydrodynamics simulations of massive stars
(2023)
Journal Article