S. Nepal
The Gaia-ESO Survey: Preparing the ground for 4MOST and WEAVE galactic surveys
Nepal, S.; Guiglion, G.; de Jong, R.S.; Valentini, M.; Chiappini, C.; Steinmetz, M.; Ambrosch, M.; Pancino, E.; Jeffries, R.D.; Bensby, T.; Romano, D.; Smiljanic, R.; Dantas, M.L.L.; Gilmore, G.; Randich, S.; Bayo, A.; Bergemann, M.; Franciosini, E.; Jiménez-Esteban, F.; Jofré, P.; Morbidelli, L.; Sacco, G.G.; Tautvaišienė, G.; Zaggia, S.
Authors
G. Guiglion
R.S. de Jong
M. Valentini
C. Chiappini
M. Steinmetz
M. Ambrosch
E. Pancino
Robin Jeffries r.d.jeffries@keele.ac.uk
T. Bensby
D. Romano
R. Smiljanic
M.L.L. Dantas
G. Gilmore
S. Randich
A. Bayo
M. Bergemann
E. Franciosini
F. Jiménez-Esteban
P. Jofré
L. Morbidelli
G.G. Sacco
G. Tautvaišienė
S. Zaggia
Abstract
Context. Originating from several sources (Big Bang, stars, cosmic rays) and being strongly depleted during stellar lifetime, the lithium element is of great interest as its chemical evolution in the Milky Way is not yet well understood. To help constrain stellar and galactic chemical evolution models, numerous and precise lithium abundances are necessary for a large range of evolutionary stages, metallicities, and Galactic volume. Aims. In the age of industrial parametrization, spectroscopic surveys such as APOGEE, GALAH, RAVE, and LAMOST have used data-driven methods to rapidly and precisely infer stellar labels (atmospheric parameters and abundances). To prepare grounds for future spectroscopic surveys like 4MOST and WEAVE, we aim to apply machine–learning techniques for lithium study/measurement. Methods. We train a Convolution Neural-Network (CNN) coupling Gaia-ESO Survey iDR6 stellar labels (Teff, log(g), [Fe/H] and A(Li)) and GIRAFFE HR15N spectra, to infer the atmospheric parameters and lithium abundances for ~ 40 000 stars. Results. We show that the CNN properly learns the physics of the stellar labels, from relevant spectral features, over a large range of evolutionary stages and stellar parameters. The lithium feature at 6707.8 Å is successfully singled out by our CNN, among the thousands of lines in the GIRAFFE HR15N setup. Rare objects like lithium-rich giants are found in our sample. Such performances are achieved thanks to a meticulously built high-quality and homogeneous training sample. Conclusions. The CNN approach is very well adapted for the next generations of spectroscopic surveys aiming at studying (among other elements) lithium, such as the 4MIDABLE-LR/HR (4MOST Milky Way disk and bulge low- and highresolution) surveys. In this context, the caveats of the machine–learning applications should be properly investigated along with realistic label uncertainties and upper limits for abundances.
Citation
Nepal, S., Guiglion, G., de Jong, R., Valentini, M., Chiappini, C., Steinmetz, M., …Zaggia, S. (2023). The Gaia-ESO Survey: Preparing the ground for 4MOST and WEAVE galactic surveys. Astronomy & Astrophysics, 671, Article A61. https://doi.org/10.1051/0004-6361/202244765
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 18, 2022 |
Online Publication Date | Mar 1, 2023 |
Publication Date | Mar 1, 2023 |
Publicly Available Date | May 30, 2023 |
Journal | Astronomy and Astrophysics: a European journal |
Print ISSN | 0004-6361 |
Publisher | EDP Sciences |
Peer Reviewed | Peer Reviewed |
Volume | 671 |
Article Number | A61 |
DOI | https://doi.org/10.1051/0004-6361/202244765 |
Publisher URL | https://www.aanda.org/articles/aa/full_html/2023/03/aa44765-22/aa44765-22.html |
Files
aa44765-22.pdf
(8.4 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc/4.0/
The_Gaia-ESO_Survey_Preparing_the_ground_for_4MOST.pdf
(8.3 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc/4.0/
You might also like
The Gaia-ESO Survey: Homogenisation of stellar parameters and elemental abundances
(2023)
Journal Article
The structure and 3D kinematics of vela OB2
(2022)
Journal Article
The Gaia-ESO Survey: Target selection of open cluster stars
(2022)
Journal Article
Downloadable Citations
About Keele Repository
Administrator e-mail: research.openaccess@keele.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search