Erin R Higgins
Stellar wind yields of very massive stars
Higgins, Erin R; Vink, Jorick S; Hirschi, Raphael; Laird, Alison M; Sabhahit, Gautham N
Abstract
The most massive stars provide an essential source of recycled material for young clusters and galaxies. While very massive stars (VMS, M>100 $\rm {\rm M}_{\odot }$) are relatively rare compared to O stars, they lose disproportionately large amounts of mass already from the onset of core H-burning. VMS have optically thick winds with elevated mass-loss rates in comparison to optically thin standard O-star winds. We compute wind yields and ejected masses on the main sequence, and we compare enhanced mass-loss rates to standard ones. We calculate solar metallicity wind yields from MESA stellar evolution models in the range 50 – 500 $\rm {\rm M}_{\odot }$, including a large nuclear network of 92 isotopes, investigating not only the CNO-cycle, but also the Ne-Na and Mg-Al cycles. VMS with enhanced winds eject 5-10 times more H-processed elements (N, Ne, Na, Al) on the main sequence in comparison to standard winds, with possible consequences for observed anti-correlations, such as C-N and Na-O, in globular clusters. We find that for VMS 95% of the total wind yields is produced on the main sequence, while only ∼ 5% is supplied by the post-main sequence. This implies that VMS with enhanced winds are the primary source of 26Al, contrasting previous works where classical Wolf-Rayet winds had been suggested to be responsible for Galactic 26Al enrichment. Finally, 200 $\rm {\rm M}_{\odot }$ stars eject 100 times more of each heavy element in their winds than 50 $\rm {\rm M}_{\odot }$ stars, and even when weighted by an IMF their wind contribution is still an order of magnitude higher than that of 50 $\rm {\rm M}_{\odot }$ stars.
Citation
Higgins, E. R., Vink, J. S., Hirschi, R., Laird, A. M., & Sabhahit, G. N. (in press). Stellar wind yields of very massive stars. Monthly Notices of the Royal Astronomical Society, 526(1), 534–547. https://doi.org/10.1093/mnras/stad2537
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 31, 2023 |
Online Publication Date | Aug 31, 2023 |
Deposit Date | Sep 21, 2023 |
Publicly Available Date | Sep 21, 2023 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Oxford University Press |
Peer Reviewed | Peer Reviewed |
Volume | 526 |
Issue | 1 |
Article Number | stad2537 |
Pages | 534–547 |
DOI | https://doi.org/10.1093/mnras/stad2537 |
Keywords | stars: massive, stars: evolution, stars: abundances, stars: mass loss, stars: interiors, nuclear reactions, nucleosynthesis, abundances |
Files
AAM
(897 Kb)
PDF
Licence
https://creativecommons.org/licenses/by-nc/4.0/
Publisher Licence URL
https://creativecommons.org/licenses/by-nc/4.0/
You might also like
Turbulence and nuclear reactions in 3D hydrodynamics simulations of massive stars
(2023)
Journal Article
Very massive star winds as sources of the short-lived radioactive isotope Al-26
(2022)
Journal Article
Very massive star winds as sources of the short-lived radioactive isotope 26Al
(2022)
Journal Article
Downloadable Citations
About Keele Repository
Administrator e-mail: research.openaccess@keele.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search