M.T. Georgieva
A link between the coercivity and microstructure of high moment Fe films and their use in magnetic tunnel junctions
Georgieva, M.T.; Telling, N.D.; Grundy, P.J.
Abstract
Magnetron sputtered single Fe films have been “softened” magnetically by controlled N-doping during the sputter deposition. This technique allows a reduction in grain size and coercivity of the Fe films, without decreasing the saturation magnetization and without the formation of any crystalline FeN phases. We describe this effect through a modification of the random magnetocrystalline anisotropy model, by taking the film thickness into account. The coercivities calculated in this way are in good agreement with those obtained experimentally.
It is demonstrated that N-doping can be applied beneficially to control the switching field of the ‘free’ layer in magnetic trilayer films of the MTJ type. It is thus possible to construct an all Fe-electrode magnetic tunnel junction (MTJ) that displays the tunneling magnetoresistance (TMR) effect by altering the switching field of one Fe layer using N-doping. The ability to control the magnetic softness of high magnetic moment materials is important in regard to their incorporation into TMR devices.
Citation
Georgieva, M., Telling, N., & Grundy, P. (2006). A link between the coercivity and microstructure of high moment Fe films and their use in magnetic tunnel junctions. Materials Science and Engineering: B, 126(2-3), 287-291. https://doi.org/10.1016/j.mseb.2005.09.026
Journal Article Type | Article |
---|---|
Online Publication Date | Dec 1, 2005 |
Publication Date | 2006-01 |
Deposit Date | May 17, 2024 |
Journal | Materials Science and Engineering: B |
Print ISSN | 0921-5107 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 126 |
Issue | 2-3 |
Pages | 287-291 |
DOI | https://doi.org/10.1016/j.mseb.2005.09.026 |
Public URL | https://keele-repository.worktribe.com/output/829068 |
You might also like
Magnetic stimulation of TREK1 regulates stress signalling and neuronal connectivity in SH-SY5Y cells
(2023)
Presentation / Conference
Remote magnetic actuation of cell signalling for tissue engineering
(2022)
Journal Article