Skip to main content

Research Repository

Advanced Search

Outputs (116)

Nanoscale synchrotron x-ray analysis of intranuclear iron in melanised neurons of Parkinson’s substantia nigra (2024)
Journal Article
Brooks, J., Everett, J., Hill, E., Billimoria, K., Morris, C. M., Sadler, P. J., …Collingwood, J. F. (in press). Nanoscale synchrotron x-ray analysis of intranuclear iron in melanised neurons of Parkinson’s substantia nigra. Communications Biology, 7(1), Article 1024. https://doi.org/10.1038/s42003-024-06636-1

Neuromelanin-pigmented neurons of the substantia nigra are selectively lost during the progression of Parkinson’s disease. These neurons accumulate iron in the disease state, and iron-mediated neuron damage is implicated in cell death. Animal models... Read More about Nanoscale synchrotron x-ray analysis of intranuclear iron in melanised neurons of Parkinson’s substantia nigra.

Label-Free In Situ Chemical Characterization of Amyloid Plaques in Human Brain Tissues (2024)
Journal Article
Everett, J., Brooks, J., Tjendana Tjhin, V., Lermyte, F., Hands-Portman, I., Plascencia-Villa, G., …Telling, N. D. (2024). Label-Free In Situ Chemical Characterization of Amyloid Plaques in Human Brain Tissues. ACS chemical neuroscience, 15(7), 1469–1483. https://doi.org/10.1021/acschemneuro.3c00756

The accumulation of amyloid plaques and increased brain redox burdens are neuropathological hallmarks of Alzheimer’s disease. Altered metabolism of essential biometals is another feature of Alzheimer’s, with amyloid plaques representing sites of dist... Read More about Label-Free In Situ Chemical Characterization of Amyloid Plaques in Human Brain Tissues.

Optical Microscopy Using the Faraday Effect Reveals in Situ Magnetization Dynamics of Magnetic Nanoparticles in Biological Samples (2024)
Journal Article
Sharifabad, M. E., Eizadi Sharifabad, M., Soucaille, R., Wang, X., Rotherham, M., Loughran, T., …Telling, N. (2024). Optical Microscopy Using the Faraday Effect Reveals in Situ Magnetization Dynamics of Magnetic Nanoparticles in Biological Samples. ACS Nano, 18(7), 5297-5310. https://doi.org/10.1021/acsnano.3c08955

The study of exogenous and endogenous nanoscale magnetic material in biology is important for developing biomedical nanotechnology as well as for understanding fundamental biological processes such as iron metabolism and biomineralization. Here, we e... Read More about Optical Microscopy Using the Faraday Effect Reveals in Situ Magnetization Dynamics of Magnetic Nanoparticles in Biological Samples.

Magnetic Coagulometry: Towards a New Nanotechnological Tool for ex vivo Monitoring Coagulation in Human Whole Blood (2023)
Journal Article
Santana-Otero, A., Harper, A., Telling, N. D., Ortega, D., & Cabrera, D. (in press). Magnetic Coagulometry: Towards a New Nanotechnological Tool for ex vivo Monitoring Coagulation in Human Whole Blood. Nanoscale, https://doi.org/10.1039/d3nr02593d

Blood clotting disorders consisting of unwanted blood clot formation or excessive bleeding are some of the main causes of death worldwide. However, there are significant limitations in the current methods used to clinically monitoring the dynamics of... Read More about Magnetic Coagulometry: Towards a New Nanotechnological Tool for ex vivo Monitoring Coagulation in Human Whole Blood.

Iron oxide nanoparticles as a new tool for treating cardiovascular diseases (2023)
Conference Proceeding
Cabrera, D., Ranjbar, J., Santana-Otero, A., Sharifabad, M. E., Ortega, D., Telling, N. D., & Harper, A. (2023). Iron oxide nanoparticles as a new tool for treating cardiovascular diseases. . https://doi.org/10.1109/intermagshortpapers58606.2023.10228198

Thrombotic events are a major cause of death and disability worldwide. Thrombolysis with the clot busting drug tissue plasminogen activator (tPA) or thromboprophylaxis using anticoagulants such as heparin are frontline treatments for thrombotic disea... Read More about Iron oxide nanoparticles as a new tool for treating cardiovascular diseases.

Probing magnetization dynamics of iron oxide nanoparticles using a point-probe magneto-optical method (2023)
Journal Article
Wang, X., Cabrera, D., Yang, Y., & Telling, N. (in press). Probing magnetization dynamics of iron oxide nanoparticles using a point-probe magneto-optical method. Frontiers in Nanotechnology, 5, Article 1214313. https://doi.org/10.3389/fnano.2023.1214313

Magnetic nanoparticles (MNPs) are promising as local heat generators for magnetic hyperthermia under AC magnetic fields. The heating efficacy of MNPs is determined by the AC hysteresis loop area, which in turn is affected by the dynamic magnetic prop... Read More about Probing magnetization dynamics of iron oxide nanoparticles using a point-probe magneto-optical method.

Illuminating the brain: Revealing brain biochemistry with synchrotron X-ray spectromicroscopy (2023)
Journal Article
Everett, J., Brooks, J., Lermyte, F., Tjhin, V. T., Hands-Portman, I., Hill, E., …Telling, N. D. (2023). Illuminating the brain: Revealing brain biochemistry with synchrotron X-ray spectromicroscopy. Journal of Electron Spectroscopy and Related Phenomena, 266, Article ARTN 147355. https://doi.org/10.1016/j.elspec.2023.147355

The synchrotron x-ray spectromicroscopy technique Scanning Transmission X-ray Microscopy (STXM) offers a powerful means to examine the underlying biochemistry of biological systems, owing to its combined chemical sensitivity and nanoscale spatial res... Read More about Illuminating the brain: Revealing brain biochemistry with synchrotron X-ray spectromicroscopy.

Magnetic activation of TREK1 triggers stress signalling and regulates neuronal branching in SH-SY5Y cells. (2022)
Journal Article
Rotherham, M., Moradi, Y., Nahar, T., Mosses, D., Telling, N., & El Haj, A. (2022). Magnetic activation of TREK1 triggers stress signalling and regulates neuronal branching in SH-SY5Y cells. Frontiers in Medical Technology, 4, Article 981421. https://doi.org/10.3389/fmedt.2022.981421

TWIK-related K+ 1 (TREK1) is a potassium channel expressed in the nervous system with multiple functions including neurotransmission and is a prime pharmacological target for neurological disorders. TREK1 gating is controlled by a wide range of exter... Read More about Magnetic activation of TREK1 triggers stress signalling and regulates neuronal branching in SH-SY5Y cells..

Remote magnetic actuation of cell signalling for tissue engineering (2022)
Journal Article
Rotherham, M., Nahar, T., Broomhall, T., Telling, N., & El Haj, A. (2022). Remote magnetic actuation of cell signalling for tissue engineering. Current Opinion in Biomedical Engineering, 24, Article 100410. https://doi.org/10.1016/j.cobme.2022.100410

Magnetic nanoparticles (MNP) are extremely versatile tools in bioengineering and medicine with diverse uses ranging from magnetic resonance contrast agents to drug delivery vehicles. Recently, MNP have been adapted to target and regulate cell signall... Read More about Remote magnetic actuation of cell signalling for tissue engineering.