MR Pickard
Using magnetic nanoparticles for gene transfer to neural stem cells: stem cell propagation method influences outcomes
Pickard, MR; Adams, CF; Barraud, P; Chari, DM
Abstract
Genetically engineered neural stem cell (NSC) transplants offer a key strategy to augment neural repair by releasing therapeutic biomolecules into injury sites. Genetic modification of NSCs is heavily reliant on viral vectors but cytotoxic effects have prompted development of non-viral alternatives, such as magnetic nanoparticle (MNPs). NSCs are propagated in laboratories as either 3-D suspension "neurospheres" or 2-D adherent "monolayers". MNPs deployed with oscillating magnetic fields ("magnetofection technology") mediate effective gene transfer to neurospheres but the efficacy of this approach for monolayers is unknown. It is important to address this issue as oscillating magnetic fields dramatically enhance MNP-based transfection in transplant cells (e.g., astrocytes and oligodendrocyte precursors) propagated as monolayers. We report for the first time that oscillating magnetic fields enhanced MNP-based transfection with reporter and functional (basic fibroblast growth factor; FGF2) genes in monolayer cultures yielding high transfection versus neurospheres. Transfected NSCs showed high viability and could re-form neurospheres, which is important as neurospheres yield higher post-transplantation viability versus monolayer cells. Our results demonstrate that the combination of oscillating magnetic fields and a monolayer format yields the highest efficacy for MNP-mediated gene transfer to NSCs, offering a viable non-viral alternative for genetic modification of this important neural cell transplant population.
Citation
Pickard, M., Adams, C., Barraud, P., & Chari, D. (2015). Using magnetic nanoparticles for gene transfer to neural stem cells: stem cell propagation method influences outcomes. Journal of Functional Biomaterials, 6, 259-279. https://doi.org/10.3390/jfb6020259
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 16, 2015 |
Publication Date | Apr 24, 2015 |
Publicly Available Date | May 26, 2023 |
Journal | Journal of Functional Biomaterials |
Publisher | MDPI |
Volume | 6 |
Pages | 259-279 |
DOI | https://doi.org/10.3390/jfb6020259 |
Keywords | nanoparticle, magnetofection, neural cell, stem cell, transplantation, genetic engineering |
Publisher URL | https://www.ncbi.nlm.nih.gov/pubmed/25918990 |
Files
D Chari - Using magnetic nanoparticles for gene transfer to neural stem cells....pdf
(1.7 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Systematic Alignment Analysis of Neural Transplant Cells in Electrospun Nanofibre Scaffolds
(2022)
Journal Article
Electroactive Scaffolds to Improve Neural Stem Cell Therapy for Spinal Cord Injury
(2022)
Journal Article
Downloadable Citations
About Keele Repository
Administrator e-mail: research.openaccess@keele.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search