Alastair Channon a.d.channon@keele.ac.uk
Opposing effects of final population density and stress on Escherichia coli mutation rate
Channon
Authors
Abstract
Evolution depends on mutations. For an individual genotype, the rate at which mutations arise is known to increase with various stressors (stress-induced mutagenesis-SIM) and decrease at high final population density (density-associated mutation-rate plasticity-DAMP). We hypothesised that these two forms of mutation-rate plasticity would have opposing effects across a nutrient gradient. Here we test this hypothesis, culturing Escherichia coli in increasingly rich media. We distinguish an increase in mutation rate with added nutrients through SIM (dependent on error-prone polymerases Pol IV and Pol V) and an opposing effect of DAMP (dependent on MutT, which removes oxidised G nucleotides). The combination of DAMP and SIM results in a mutation rate minimum at intermediate nutrient levels (which can support 7?×?108?cells?ml-1). These findings demonstrate a strikingly close and nuanced relationship of ecological factors-stress and population density-with mutation, the fuel of all evolution.
Citation
Channon. (2018). Opposing effects of final population density and stress on Escherichia coli mutation rate. ISME Journal, 2981-2987. https://doi.org/10.1038/s41396-018-0237-3
Acceptance Date | Jun 20, 2018 |
---|---|
Publication Date | Dec 1, 2018 |
Journal | ISME Journal |
Print ISSN | 1751-7362 |
Publisher | Nature Publishing Group |
Pages | 2981-2987 |
DOI | https://doi.org/10.1038/s41396-018-0237-3 |
Publisher URL | http://doi.org/10.1038/s41396-018-0237-3 |
Files
s41396-018-0237-3.pdf
(1.1 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
The Effect of Social Information Use without Learning on the Evolution of Behaviour
(2021)
Journal Article
The effect of social information use without learning on the evolution of social behavior
(2021)
Journal Article
Neuroevolution of Humanoids that Walk Further and Faster with Robust Gaits
(2019)
Journal Article
Maximum Individual Complexity is Indefinitely Scalable in Geb
(2019)
Journal Article
Downloadable Citations
About Keele Repository
Administrator e-mail: research.openaccess@keele.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search