J Lim
Remote manipulation of magnetic nanoparticles using magnetic field gradient to promote cancer cell death
Lim, J; Dobson, J; Subramanian, M; Miaskowski, A; Jenkins, S
Abstract
The manipulation of magnetic nanoparticles (MNPs) using an external magnetic field, has been successfully demonstrated in various biomedical applications. Some have utilised this non-invasive external stimulus and there is an potential to build on this platform. The focus of this study is to understand the manipulation of MNPs by a time-varying static magnetic field and how, at different frequencies and displacement, this can alter cellular function. Here we explore, using numerical modeling, the physical mechanism which underlies this process, and we discuss potential improvements for its use in biomedical applications. From our data and other related studies, we infer that such phenomenon largely depends on the magnetic field gradient, magnetic susceptibility and size of the MNPs, magnet array oscillating frequency, viscosity of the medium surrounding MNPs, and distance between the magnetic field source and MNPs. Additionally, we demonstrate cytotoxicity in neuroblastoma (SH-SY5Y) and hepatocellular carcinoma (HepG2) cells in vitro induced by MNPs exposed to a magnetic field gradient and oscillating at various frequencies and displacement amplitudes. Even though this technique reliably produces MNP endocytosis and/or cytotoxicity, a better understanding is required to develop this system for precision manipulation of MNPs, ex vivo.
Citation
Lim, J., Dobson, J., Subramanian, M., Miaskowski, A., & Jenkins, S. (2019). Remote manipulation of magnetic nanoparticles using magnetic field gradient to promote cancer cell death. Applied Physics A, https://doi.org/10.1007/s00339-019-2510-3
Acceptance Date | Feb 21, 2019 |
---|---|
Publication Date | Mar 4, 2019 |
Journal | Applied Physics A-Materials Science & Processing |
Print ISSN | 0947-8396 |
Publisher | Springer Verlag |
DOI | https://doi.org/10.1007/s00339-019-2510-3 |
Publisher URL | https://link.springer.com/article/10.1007%2Fs00339-019-2510-3#copyrightInformation |
Files
Subramanian 2019 Remote manipulation of magnetic nanoparticles using magnetic field gradient to promote cancer cell death, preprint.pdf
(488 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
The Influence of Nicotinamide on Health and Disease in the Central Nervous System
(2018)
Journal Article
Downloadable Citations
About Keele Repository
Administrator e-mail: research.openaccess@keele.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search