Goksel Misirli g.misirli@keele.ac.uk
Virtual Parts Repository 2: Model-driven design of genetic regulatory circuits
Misirli
Authors
Abstract
<jats:title>Abstract</jats:title><jats:p>Engineering genetic regulatory circuits is key to the creation of biological applications that are responsive to environmental changes. Computational models can assist in understanding especially large and complex circuits where manual analysis is infeasible, permitting a model-driven design process. However, there are still few tools that offer the ability to simulate the system under design. One of the reasons for this is the lack of accessible model repositories or libraries that cater for the modular composition of models of synthetic systems that do not yet exist in nature. Here, we present the Virtual Parts Repository 2, a resource to facilitate the model-driven design of genetic regulatory circuits, which provides reusable, modular and composable models. The repository is service-oriented and can be utilized by design tools in computational workflows. Designs provided in Synthetic Biology Open Language documents are used to derive system-scale and hierarchical Systems Biology Markup Language models. We also present a rule-based modeling abstraction based on reaction networks to facilitate scalable and modular modeling of complex and large designs. This modeling abstraction incorporates design patterns such as roadblocking, distributed deployment of genetic circuits using plasmids and cellular resource dependency. The computational resources and the modeling abstraction presented in this paper allow computational design tools to take advantage of computational simulations and ultimately help facilitate more predictable applications.</jats:p><jats:sec><jats:title>Graphical TOC Entry</jats:title><jats:fig id="ufig1" position="float" fig-type="figure" orientation="portrait"><jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="439316v1_ufig1" position="float" orientation="portrait" /></jats:fig></jats:sec>
Citation
Misirli. Virtual Parts Repository 2: Model-driven design of genetic regulatory circuits. bioRxiv,
Journal | bioRxiv |
---|---|
Print ISSN | 2692-8205 |
Publisher | Cold Spring Harbor Laboratory Press |
Files
2021.04.11.439316v1.full.pdf
(3.4 Mb)
PDF
You might also like
Reflections on the 35th BCS Human-Computer Interaction Conference at Keele University
(2022)
Conference Proceeding
Virtual Parts Repository 2: Model-Driven Design of Genetic Regulatory Circuits
(2021)
Journal Article
Synthetic biology open language visual (SBOL visual) version 3.0.
(2021)
Journal Article
OMEX metadata specification (version 1.2).
(2021)
Journal Article
Modelling The Fitness Landscapes of a SCRaMbLEd Yeast Genome
(2021)
Presentation / Conference
Downloadable Citations
About Keele Repository
Administrator e-mail: research.openaccess@keele.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search