Skip to main content

Research Repository

Advanced Search

All Outputs (52)

Transplantation of encapsulated autologous olfactory ensheathing cell populations expressing chondroitinase for spinal cord injury: A safety and feasibility study in companion dogs (2022)
Journal Article

Spinal cord injury (SCI) can cause irreversible paralysis, with no regenerative treatment clinically available. Dogs with natural SCI present an established model and can facilitate translation of experimental findings in rodents to people. We cond... Read More about Transplantation of encapsulated autologous olfactory ensheathing cell populations expressing chondroitinase for spinal cord injury: A safety and feasibility study in companion dogs.

Developing a New Strategy for Delivery of Neural Transplant Populations Using Precursor Cell Sprays and Specialized Cell Media (2021)
Journal Article

Neural precursor/stem cell transplantation therapies promote regeneration in neurological injuries, but current cell delivery methods have drawbacks. These include risks with surgical microinjection (e.g., hemorrhage, embolism) and high cell loss wit... Read More about Developing a New Strategy for Delivery of Neural Transplant Populations Using Precursor Cell Sprays and Specialized Cell Media.

Delivery of chondroitinase by canine mucosal olfactory ensheathing cells alongside rehabilitation enhances recovery after spinal cord injury (2021)
Journal Article

Spinal cord injury (SCI) can cause chronic paralysis and incontinence and remains a major worldwide healthcare burden, with no regenerative treatment clinically available. Intraspinal transplantation of olfactory ensheathing cells (OECs) and injectio... Read More about Delivery of chondroitinase by canine mucosal olfactory ensheathing cells alongside rehabilitation enhances recovery after spinal cord injury.

Enhancing the regenerative potential of stem cell-laden, clinical-grade implants through laminin engineering (2021)
Journal Article

Protected delivery of neural stem cells (NSCs; a major transplant population) within bioscaffolds has the potential to improve regenerative outcomes in sites of spinal cord injury. Emergent research has indicated clinical grade bioscaffolds (e.g. tho... Read More about Enhancing the regenerative potential of stem cell-laden, clinical-grade implants through laminin engineering.

Stiffness-matched biomaterial implants for cell delivery: clinical, intraoperative ultrasound elastography provides a 'target' stiffness for hydrogel synthesis in spinal cord injury (2020)
Journal Article

Safe hydrogel delivery requires stiffness-matching with host tissues to avoid iatrogenic damage and reduce inflammatory reactions. Hydrogel-encapsulated cell delivery is a promising combinatorial approach to spinal cord injury therapy, but a lack of... Read More about Stiffness-matched biomaterial implants for cell delivery: clinical, intraoperative ultrasound elastography provides a 'target' stiffness for hydrogel synthesis in spinal cord injury.

Safe nanoengineering and incorporation of transplant populations in a neurosurgical grade biomaterial, DuraGen PlusTM, for protected cell therapy applications (2020)
Journal Article

High transplant cell loss is a major barrier to translation of stem cell therapy for pathologies of the brain and spinal cord. Encapsulated delivery of stem cells in biomaterials for cell therapy is gaining popularity but experimental research has ov... Read More about Safe nanoengineering and incorporation of transplant populations in a neurosurgical grade biomaterial, DuraGen PlusTM, for protected cell therapy applications.

Electrophysiological properties of neurons grown on soft polymer scaffolds reveal the potential to develop neuromimetic culture environments (2020)
Journal Article

Tissue engineering methodologies for various physiological systems are seeing a significant trend towards 3-D cell culture in or on ‘soft’ polymeric hydrogel materials, widely considered to provide a more biomimetic environment for cell growth versus... Read More about Electrophysiological properties of neurons grown on soft polymer scaffolds reveal the potential to develop neuromimetic culture environments.

Less is more: Investigating the influence of cellular nanoparticle load on transfection outcomes in neural cells (2019)
Journal Article

Genetic engineering of cell transplant populations offers potential for delivery of neurotherapeutic factors to modify the regenerative microenvironment of the injured spinal cord. The use of magnetic nanoparticle (MNP) based vectors has reduced the... Read More about Less is more: Investigating the influence of cellular nanoparticle load on transfection outcomes in neural cells.

Neurosurgical grade biomaterial, DuraGenTM, offers a promising matrix for protected delivery of neural stem cells in clinical cell therapies (2019)
Journal Article

Aims Transplantation of neural stem cells (NSCs) into sites of neurological injury is being investigated in clinical trials around the world. These important self-renewing and multipotent precursors can generate the major central nervous system cell... Read More about Neurosurgical grade biomaterial, DuraGenTM, offers a promising matrix for protected delivery of neural stem cells in clinical cell therapies.

Nanoparticle-Based Imaging of Clinical Transplant Populations Encapsulated in Protective Polymer Matrices (2019)
Journal Article

A recent clinical trial proves that autologous olfactory mucosal cell (OMC) transplantation improves locomotion in dogs with naturally occurring spinal injuries comparable to human lesions. However, not all dogs respond to the treatment, likely due t... Read More about Nanoparticle-Based Imaging of Clinical Transplant Populations Encapsulated in Protective Polymer Matrices.