Skip to main content

Research Repository

Advanced Search

Decellularisation and characterisation of porcine pleura for lung tissue engineering (2023)
Journal Article
Vikranth, T., Dale, T., & Forsyth, N. R. (in press). Decellularisation and characterisation of porcine pleura for lung tissue engineering. bioRxiv, https://doi.org/10.1101/2023.06.20.545830

Decellularisation offers a broad range of biomimetic scaffolds of allogeneic and xenogeneic origins, exhibiting innate tissue-specific characteristics. We explored a physico-chemical method for decellularising porcine pleural membranes (PPM) as poten... Read More about Decellularisation and characterisation of porcine pleura for lung tissue engineering.

Physiological Oxygen Causes the Release of Volatile Organic Compounds from Human Pluripotent Stem Cells with Possible Roles in Maintaining Self-Renewal and Pluripotency (2022)
Journal Article
Barreto, S., Al-Zubaidi, M., Dale, T., Worrall, A., Kapacee, Z., Kimber, S., …Rutter, A. (2022). Physiological Oxygen Causes the Release of Volatile Organic Compounds from Human Pluripotent Stem Cells with Possible Roles in Maintaining Self-Renewal and Pluripotency. Preprints, https://doi.org/10.20944/preprints202203.0143.v1

<jats:p>Human pluripotent stem cells (hPSCs) have widespread potential biomedical applications. There is a need for large-scale in vitro production of hPSCs, and optimal culture methods are vital in achieving this. Physiological oxygen (2% O2) improv... Read More about Physiological Oxygen Causes the Release of Volatile Organic Compounds from Human Pluripotent Stem Cells with Possible Roles in Maintaining Self-Renewal and Pluripotency.